
Quantum Algorithms & Qiskit

Alexander J. Heilman

August 19, 2021

Intentions

Introduce you to some basic quantum algorithms

I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform

I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation

I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution

I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits

I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

Intentions

Introduce you to some basic quantum algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Introduce you to some tools available through Qiskit
I Visualize qubit evolution
I Simulate quantum circuits
I Experiment with real quantum computers

First, the QFT

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum
implementation of the discrete Fourier transform.

This means if you give the
QFT some basis state |b〉,
the QFT will give back
states with phases traveling
around the unit circle at a
rate of ωb.

But how?

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum
implementation of the discrete Fourier transform.

This means if you give the
QFT some basis state |b〉,
the QFT will give back
states with phases traveling
around the unit circle at a
rate of ωb.

But how?

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum
implementation of the discrete Fourier transform.

This means if you give the
QFT some basis state |b〉,
the QFT will give back
states with phases traveling
around the unit circle at a
rate of ωb.

But how?

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum
implementation of the discrete Fourier transform.

This means if you give the
QFT some basis state |b〉,
the QFT will give back
states with phases traveling
around the unit circle at a
rate of ωb.

But how?

QFT: The gory details

The explict action of the n-qubit QFT on some given basis vector is

|j1, ..., jn〉 −→(
|0〉+ e2πi0.jn |1〉

)
⊗
(
|0〉+ e2πi0.jn−1jn |1〉

)
⊗ ...⊗

(
|0〉+ e2πi0.j1...jn |1〉

)
2n/2

.

It’s easier to see in matrix form

QFT: The gory details

The explict action of the n-qubit QFT on some given basis vector is

|j1, ..., jn〉 −→(
|0〉+ e2πi0.jn |1〉

)
⊗
(
|0〉+ e2πi0.jn−1jn |1〉

)
⊗ ...⊗

(
|0〉+ e2πi0.j1...jn |1〉

)
2n/2

.

It’s easier to see in matrix form

QFT: The gory details II

For n = 3 the QFT is

1
2
√
2



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


.

Not so interesting yet, but it’s usefulness will soon be found in
phase estimation

QFT: The gory details II

For n = 3 the QFT is

1
2
√
2



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


.

Not so interesting yet, but it’s usefulness will soon be found in
phase estimation

Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this? Easy!

Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this? Easy!

Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this? Easy!

Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this?

Easy!

Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this? Easy!

Phase Estimation: Not so bad!

Phase Estimation: Not so bad!

Phase Estimation: Not so bad!

Phase Estimation: Not so bad!

Amplitude Amplification

Amplitude estimation takes some statevector partitioned into a
good and a bad subspace

|ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

Amplitude Amplification

Amplitude estimation takes some statevector partitioned into a
good and a bad subspace

|ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

Amplitude Amplification

And returns a statevector nudged towards the good subspace.

This is accomplished with consecutive applications of a special
operator

Amplitude Amplification

And returns a statevector nudged towards the good subspace.

This is accomplished with consecutive applications of a special
operator

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:

1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|

2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|

3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!

Amplitude Amplification: Visualization I
First apply the operator SG ,

Amplitude Amplification: Visualization I
First apply the operator SG ,

Amplitude Amplification: Visualization II
Then apply the operator Sψ,

Amplitude Amplification: Visualization II
Then apply the operator Sψ,

Amplitude Amplification: Visualization III
Now, negate the resulting statevector

Amplitude Amplification: Visualization III
Now, negate the resulting statevector

Amplitude Amplification: Visualization IV

And voilá!

Though, we’d need to know n as well. Ideally b π4θc
Now, let’s do some coding!

Amplitude Amplification: Visualization IV

And voilá!

Though, we’d need to know n as well

. Ideally b π4θc
Now, let’s do some coding!

Amplitude Amplification: Visualization IV

And voilá!

Though, we’d need to know n as well. Ideally b π4θc

Now, let’s do some coding!

Amplitude Amplification: Visualization IV

And voilá!

Though, we’d need to know n as well. Ideally b π4θc
Now, let’s do some coding!

Qiskit

Qiskit is a quantum software
devlopment kit with a python
front-end partially developed by
IBM.

Features
1. Simulate + visualize

quantum circuits you
create yourself

2. Compatible with IBM’s
current quantum
computers

3. Vibrant and active online
community

Qiskit

Qiskit is a quantum software
devlopment kit with a python
front-end partially developed by
IBM.

Features
1. Simulate + visualize

quantum circuits you
create yourself

2. Compatible with IBM’s
current quantum
computers

3. Vibrant and active online
community

Qiskit

Qiskit is a quantum software
devlopment kit with a python
front-end partially developed by
IBM.

Features
1. Simulate + visualize

quantum circuits you
create yourself

2. Compatible with IBM’s
current quantum
computers

3. Vibrant and active online
community

Qiskit

Qiskit is a quantum software
devlopment kit with a python
front-end partially developed by
IBM.

Features
1. Simulate + visualize

quantum circuits you
create yourself

2. Compatible with IBM’s
current quantum
computers

3. Vibrant and active online
community

Running the QFT

Let’s run the QFT on some states in Qiskit.

We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Running the QFT

Let’s run the QFT on some states in Qiskit. We’ll use a statevector
simulation.

The local evolution of the qubits is depicted in the
bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Running the QFT

Let’s run the QFT on some states in Qiskit. We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Running the QFT

Let’s run the QFT on some states in Qiskit. We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Running the QFT

Let’s run the QFT on some states in Qiskit. We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Running the QFT

Let’s run the QFT on some states in Qiskit. We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →

Where’s the code?

For the QFT transforms just shown, it’s rather simple:

from qiskit.circuit.library import QFT
qft = QFT(3)
qft3_000 = execute(qft, backend).result()
plot_bloch_multivector(qft3_000.get_statevector())

Moving forward, I’ll just link the code online.

Where’s the code?

For the QFT transforms just shown, it’s rather simple:

from qiskit.circuit.library import QFT
qft = QFT(3)
qft3_000 = execute(qft, backend).result()
plot_bloch_multivector(qft3_000.get_statevector())

Moving forward, I’ll just link the code online.

Where’s the code?

For the QFT transforms just shown, it’s rather simple:

from qiskit.circuit.library import QFT
qft = QFT(3)
qft3_000 = execute(qft, backend).result()
plot_bloch_multivector(qft3_000.get_statevector())

Moving forward, I’ll just link the code online.

Finding Phases

Let’s run the 3-qubit phase estimation algorithim on some gates.

We’ll use controlled phase gates, with matrices of the form

CP (α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iα

 .
We already know that |1〉 is an eigenvector of basic phase gates.

Finding Phases

Let’s run the 3-qubit phase estimation algorithim on some gates.

We’ll use controlled phase gates

, with matrices of the form

CP (α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iα

 .
We already know that |1〉 is an eigenvector of basic phase gates.

Finding Phases

Let’s run the 3-qubit phase estimation algorithim on some gates.

We’ll use controlled phase gates, with matrices of the form

CP (α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iα

 .

We already know that |1〉 is an eigenvector of basic phase gates.

Finding Phases

Let’s run the 3-qubit phase estimation algorithim on some gates.

We’ll use controlled phase gates, with matrices of the form

CP (α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iα

 .
We already know that |1〉 is an eigenvector of basic phase gates.

Finding Phases: CP(π/4)

This time, we’ll use the qasm simulator

. This lets us get counts of
simulated measurements at the end. So, let’s see the circuit:

Finding Phases: CP(π/4)

This time, we’ll use the qasm simulator. This lets us get counts of
simulated measurements at the end

. So, let’s see the circuit:

Finding Phases: CP(π/4)

This time, we’ll use the qasm simulator. This lets us get counts of
simulated measurements at the end. So, let’s see the circuit:

Finding Phases: CP(π/4)

This time, we’ll use the qasm simulator. This lets us get counts of
simulated measurements at the end. So, let’s see the circuit:

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect?

Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!

As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉

or |001〉 in binary

Finding Phases: CP(π/4)

Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary

Finding Phases: CP(5π/4)

Let’s try it again with another ideal phase:

Finding Phases: CP(5π/4)

Let’s try it again with another ideal phase:

Finding Phases: CP(5π/4)

Now, we should get |5〉 = |101〉:

Yup!

Finding Phases: CP(5π/4)

Now, we should get |5〉 = |101〉:

Yup!

Finding Phases: CP(4π/5)

Let’s try something that’s not an ideal phase:

Finding Phases: CP(4π/5)

Let’s try something that’s not an ideal phase:

Finding Phases: CP(4π/5)

Let’s see what we get when we run the simulation several times:

This seems to be a good estimate given 4π
5

4
π = 3.2 ≈ 3.

Let’s do some amplitude amplification!

Finding Phases: CP(4π/5)

Let’s see what we get when we run the simulation several times:

This seems to be a good estimate given 4π
5

4
π = 3.2 ≈ 3.

Let’s do some amplitude amplification!

Finding Phases: CP(4π/5)

Let’s see what we get when we run the simulation several times:

This seems to be a good estimate given 4π
5

4
π = 3.2 ≈ 3.

Let’s do some amplitude amplification!

Finding Phases: CP(4π/5)

Let’s see what we get when we run the simulation several times:

This seems to be a good estimate given 4π
5

4
π = 3.2 ≈ 3.

Let’s do some amplitude amplification!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here.

Let’s run it!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2

.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here.

Let’s run it!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉

.
The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here.

Let’s run it!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.

We only need to run the operations once as n = 1 here.

Let’s run it!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here

.

Let’s run it!

Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here.

Let’s run it!

Amplitude Amplification in Practice: Simulation

Running the previous circuit on the simulation we used for phase
estimation:

Perfect results! Let’s run it for real!

Amplitude Amplification in Practice: Simulation

Running the previous circuit on the simulation we used for phase
estimation:

Perfect results!

Let’s run it for real!

Amplitude Amplification in Practice: Simulation

Running the previous circuit on the simulation we used for phase
estimation:

Perfect results! Let’s run it for real!

Amplitude Amplification in Practice: Calling IBMQ

Now, running our circuit on IBMQ-Lima, a real 5-qubit quantum
computer:

Not too bad!

Amplitude Amplification in Practice: Calling IBMQ

Now, running our circuit on IBMQ-Lima, a real 5-qubit quantum
computer:

Not too bad!

Amplitude Amplification in Practice: Calling IBMQ

Now, running our circuit on IBMQ-Lima, a real 5-qubit quantum
computer:

Not too bad!

Wrapping Up!

Basic Quantum Algorithms

I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform

I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation

I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit

I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution

I Simulate experiments on circuits
I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits

I Run circuits on real computers!

Wrapping Up!

Basic Quantum Algorithms
I Quantum Fourier Transform
I Phase Estimation
I Amplitude Amplification

Qiskit
I Visualize qubit evolution
I Simulate experiments on circuits
I Run circuits on real computers!

Moving Forward

Where to go from here?

I Build to more complex applications
I Extend to quantum machine learning
I Run some interesting experiments

Moving Forward

Where to go from here?
I Build to more complex applications

I Extend to quantum machine learning
I Run some interesting experiments

Moving Forward

Where to go from here?
I Build to more complex applications
I Extend to quantum machine learning

I Run some interesting experiments

Moving Forward

Where to go from here?
I Build to more complex applications
I Extend to quantum machine learning
I Run some interesting experiments

That’s it!

Notebooks for the circuits run here can be found at
https://alexheilman.com

https://alexheilman.com

References I

[1] Qiskit: An Open-source Framework for Quantum Computing.
2019. DOI: 10.5281/zenodo.2562110.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information: 10th Anniversary
Edition. 10th. USA: Cambridge University Press, 2011. ISBN:
1107002176.

[3] n-qubit QFT diagram source.
https://jonathan-hui.medium.com/qc-quantum-
fourier-transform-45436f90a43.

[4] Phase estimation diagram source. https:
//en.wikipedia.org/wiki/Quantum_phase_estimation_
algorithm#/media/File:PhaseCircuit-crop.svg.

[5] Qiskit Textbook.
https://qiskit.org/textbook/preface.html.

https://doi.org/10.5281/zenodo.2562110
https://jonathan-hui.medium.com/qc-quantum-fourier-transform-45436f90a43
https://jonathan-hui.medium.com/qc-quantum-fourier-transform-45436f90a43
https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm##/media/File:PhaseCircuit-crop.svg
https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm##/media/File:PhaseCircuit-crop.svg
https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm##/media/File:PhaseCircuit-crop.svg
https://qiskit.org/textbook/preface.html

References II

[6] Gilles Brassard, Peter Hyer, Michele Mosca, et al. “Quantum
amplitude amplification and estimation”. In: Quantum
Computation and Information (2002), 532̆01374. ISSN:
0271-4132. DOI: 10.1090/conm/305/05215. URL:
http://dx.doi.org/10.1090/conm/305/05215.

https://doi.org/10.1090/conm/305/05215
http://dx.doi.org/10.1090/conm/305/05215

Thanks

	References

