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The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum
implementation of the discrete Fourier transform.

This means if you give the
QFT some basis state |b〉,
the QFT will give back
states with phases traveling
around the unit circle at a
rate of ωb.

But how?
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QFT: The gory details

The explict action of the n-qubit QFT on some given basis vector is

|j1, ..., jn〉 −→(
|0〉+ e2πi0.jn |1〉

)
⊗
(
|0〉+ e2πi0.jn−1jn |1〉

)
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|0〉+ e2πi0.j1...jn |1〉

)
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QFT: The gory details II

For n = 3 the QFT is

1
2
√
2



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


.

Not so interesting yet, but it’s usefulness will soon be found in
phase estimation
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Phase Estimation

Phase Estimation takes some given unitary operator and an
associated eigenvector and returns the corresponding eigenvalue.

If U|ψ〉 = λ|ψ〉 then U, |ψ〉 PE−→ λ

.

Really it returns |k〉, where the eigenvalue is λ = e iθ with θ = k 2π
2n .

(Or closest n-bit approx. with at least 40% probability)

So how do we do this? Easy!
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Amplitude Amplification

Amplitude estimation takes some statevector partitioned into a
good and a bad subspace

|ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.
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This is accomplished with consecutive applications of a special
operator
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Amplitude Amplification: Working principles

Remember |ψ〉 = sin(θ)|G〉+ cos(θ)|B〉.

We define operators:
1. SG = I− 2|G〉〈G|
2. Sψ = I− 2|ψ〉〈ψ|
3. Q = −SψSG

Let’s see what they do!
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Amplitude Amplification: Visualization III
Now, negate the resulting statevector
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Amplitude Amplification: Visualization IV

And voilá!

Though, we’d need to know n as well. Ideally b π4θc
Now, let’s do some coding!
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devlopment kit with a python
front-end partially developed by
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Features
1. Simulate + visualize

quantum circuits you
create yourself

2. Compatible with IBM’s
current quantum
computers

3. Vibrant and active online
community
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Running the QFT

Let’s run the QFT on some states in Qiskit.

We’ll use a statevector
simulation. The local evolution of the qubits is depicted in the

bloch spheres below:

Input: |000〉 →

Input: |001〉 →

Input: |010〉 →
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Where’s the code?

For the QFT transforms just shown, it’s rather simple:

from qiskit.circuit.library import QFT
qft = QFT(3)
qft3_000 = execute(qft, backend).result()
plot_bloch_multivector(qft3_000.get_statevector())

Moving forward, I’ll just link the code online.
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Finding Phases

Let’s run the 3-qubit phase estimation algorithim on some gates.

We’ll use controlled phase gates, with matrices of the form

CP (α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iα

 .
We already know that |1〉 is an eigenvector of basic phase gates.
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Running the simulation gives a simulated measurement set:

Is this what we would expect? Yes!
As the phase can be encoded perfectly in 3 qubits, we should
expect the output vector to be |k〉 = |α2n−1

π 〉 or |001〉 in binary
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Let’s see what we get when we run the simulation several times:

This seems to be a good estimate given 4π
5

4
π = 3.2 ≈ 3.

Let’s do some amplitude amplification!
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Amplitude Amplification in Practice

Below is a simple 2-qubit circuit for amplitude amplification that
searches for the |11〉 state:

The first section initializes the state into |+〉⊗2.
The second portion flips the sign of only |11〉.

The third section flips the state about the original vector.
We only need to run the operations once as n = 1 here.

Let’s run it!
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Running the previous circuit on the simulation we used for phase
estimation:

Perfect results! Let’s run it for real!
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That’s it!

Notebooks for the circuits run here can be found at
https://alexheilman.com

https://alexheilman.com
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