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Overview

• Qubits and in general, qudits

review relevant postulates of
QM

• Pure states and ensembles

• Consider more general set of quantum operations and
measurements (QIS)

• Package the more basic elements into neat ’circuits’ (QCS)
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Qubits and Qudits

Only dealing with a finite dimensional, discrete system (in
contrast to the continuous states of position and
momentum).

Qubit state: |ψ⟩ =
[
α
β

]
αα∗ + ββ∗ = 1

Qudit state: |ψ⟩ =


α
β
γ
...

 αα∗ + ββ∗ + γγ∗ + ... = 1
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Computational Basis

We now define some specific orthonormal basis, which we
will term the computational basis, taking the form:

|i⟩ =



0
0
...
1
...
0



1
2
...
i
...
d

which clearly satisfies

⟨i|j⟩ = δij

and where we have used the common notation ⟨ψ| =
[
ψ∗

1 ψ∗
2 ...

]
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Aside: Bloch Sphere
Elements of the qubit state space may be parametrized by three
angles, as below:

|ψ⟩ = eiγ(cos
θ

2 |0⟩+ eiφ sin
θ

2 |1⟩)

However, due to the global phase invariance inherent in the action
of measurements, we may take γ = 0. Thus, we may consider
states to only have two relevant parameters: θ, φ.
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Interlude: Proto-typical Examples

Qubits:
• Electron Spin (Like Stern-Gerlach)

• Photon Polarization
• Symmetric/Antisymmetric Electron Pair (Singlet ↔ Triplet)

Qudits:
• Energy Levels
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Postulates of QM (Vectors)

1. The state space of isolated physical systems is a Hilbert
space. The state of the system is completely determined by
a vector in this space.

2. Closed quantum systems evolve in time according to
unitary transformations.
3. Measurement of the state is described by a set of
measurement operators, where the coefficients of the state
in some corresponding basis describe the probability of
measurement outcomes
4. The initial state of a composite system consisting of
several initial substates is the tensor product of all those
initial substates.
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measurement operators, where the coefficients of the state
in some corresponding basis describe the probability of
measurement outcomes

4. The initial state of a composite system consisting of
several initial substates is the tensor product of all those
initial substates.
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Postulates of QM (Vectors)

1. The state space of isolated physical systems is a Hilbert
space. The state of the system is completely determined by
a vector in this space.
2. Closed quantum systems evolve in time according to
unitary transformations.
3. Measurement of the state is described by a set of
measurement operators, where the coefficients of the state
in some corresponding basis describe the probability of
measurement outcomes
4. The initial state of a composite system consisting of
several initial substates is the tensor product of all those
initial substates.
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Inner Product Space I
An inner product space is a vector space V equipped with a
binary product (·, ·) between elements of the vector space
|ψ⟩ ∈ V that satisfies the following requirements:

• Linear in the one of the arguments(
|u⟩,

∑
i
λi|vi⟩

)
=
∑

i
λi(|u⟩, |vi⟩)

• Conjugate symmetric under exchange

(|u⟩, |v⟩) = (|v⟩, |u⟩)∗

• Positive-definite for non-zero vectors

(|u⟩, |u⟩) > 0

In finite dimensions, a complex inner product space is equivalent to a Hilbert space.
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• Conjugate symmetric under exchange
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Inner Product Space II
In our case where |u⟩, |v⟩ ∈ Cn, we may define the inner
product:

(|u⟩, |v⟩) =
∑

i
u∗i vi =

[
u∗1 u∗2, ...u∗n

]


v1
v2
...

vn


which we will denote in the bra-ket notation to be:

⟨u|v⟩

The definition of an inner product, as above, allows us to
define a norm on the vector space:

∥ |u⟩ ∥=
√
⟨u|u⟩
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Inner Product Space III

The Cauchy-Schwarz Inequality: The inner product in an in-
ner product space is guaranteed to satisfy the following relation:

|⟨u|v⟩|2 ≤ ⟨u|u⟩⟨v|v⟩

this is often useful, and more general than the triangle inequality.

The inner product and structure of bra-ket notation allows us to
express the action of linear operators on the space in a certain
basis {|i⟩} in a useful way, by utilizing an outer product
representation.

U =
∑

i,j
λij|i⟩⟨j|

In the case that this basis coincides with the eigenbasis of the
operator, we essentially have the spectral decomposition/diagonal
form of U.
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Inner Product Space IV

Example: The outer product of two two-by-one vectors gives back a
matrix. As an explicit example, consider the two vectors below, and
their outer product.

|a⟩ =
[

3
13

]
, |b⟩

[
7i
17

]
|a⟩⟨b| =

[
3
13

] [
−7i 17

]
=

[
−21i 51
−91i 241

]

Note that in the special case of computational basis elements, each
outer product corresponds to one parameter in the matrix; with the
further special case of the outer product of one basis element with
itself being an element on the diagonal.

a10|1⟩⟨0| =
[
0 a10
0 0

]
a00|0⟩⟨0|+ a11|1⟩⟨1| =

[
a00 0
0 a11

]
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Inner Product Space V

Spectral Decomposition: A very important fact about normal
and or real symmetric matrices (satisfying [M,M∗] = 0) follows
from the more general spectral theorem. All Hermitians and
unitaries are representable in some basis (formed by their eigen-
vectors) in which they are diagonal. Explicitly, we have for such
matrices:

M =
D∑

i=1
λi|λi⟩⟨λi|

where M is a normal D × D matrix and |λi⟩ refers to M’s i-th
normalized eigenvector with eigenvalue λi. Note that Hermitians
are guaranteed to have all real eigenvalues λi.

This is equivalent to saying these matrices’ eigenvectors form an
orthonormal basis.
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Why a Hilbert Space?

One may ask: why do we need to mention Hilbert spaces at
all?

This, of course can’t be entirely answered. However, at a
most basic level, physical theories describe how we may
describe our expectations of results of measurements of
certain systems in time (see QBism). In essence, we may
describe these prospective measurements and their outcomes
as an algebra of observables on the state space. And, due to
the Gelfand-Naimark theorem, this algebra of observables
may be represented/realized as a set of operators on some
Hilbert space
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Why a Hilbert Space?

One may ask: why do we need to mention Hilbert spaces at
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This, of course can’t be entirely answered. However, at a
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describe our expectations of results of measurements of
certain systems in time (see QBism). In essence, we may
describe these prospective measurements and their outcomes
as an algebra of observables on the state space. And, due to
the Gelfand-Naimark theorem, this algebra of observables
may be represented/realized as a set of operators on some
Hilbert space
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Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.

We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:
• Trace of value one

Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.
We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:

• Trace of value one
Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.
We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:
• Trace of value one

Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.
We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:
• Trace of value one

Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.
We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:
• Trace of value one

Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Mixed States/Density Matrices
Pure states are normalized rays in Hilbert space, representable
simply as vectors or kets of the form |ψ⟩, or equivalently as
positive operators |ψ⟩⟨ψ|.
We may extend the second notation to include a larger set of
states. These may be characterized completely as operators on the
state space satisfying the following conditions:
• Trace of value one

Tr(ρ) = 1

• Positive semi-definiteness

⟨ψ|ρ|ψ⟩ ≥ 0

• Hermitian
ρ = ρ†

Operators satisfying the above constitute a representation of
states known as density matrices or density operators



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pure States and Ensembles/Density Matrices

Fidelity: While the ’closeness’ of two pure states is readily de-
scribable via their inner product, we need to define some measure
for the ’closeness’ of density matrices. One common measure for
’closeness’ is fidelity, defined below

F(ρ, σ) = Tr(
√√

ρσ
√
ρ)

which is symmetric, and bounded within the range 0 ≤ F ≤ 1.

Purification: Purification allows us to describe any mixed state
as a pure state in a larger space. Explicitly, we may always find
a state |AR⟩ such that ρA = TrR(|AR⟩) for arbitrary ρA
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Purification: Purification allows us to describe any mixed state
as a pure state in a larger space. Explicitly, we may always find
a state |AR⟩ such that ρA = TrR(|AR⟩) for arbitrary ρA



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Why Density Operators?
One may then ask: why should be care at all about this
alternative formalism if it’s equivalent?

Two Good Answers:
• Ensembles of states, like regular probability distribution of
states
Simply sum over set of states in distribution, scaled by
respective probability.

ρ =
∑

i
pi|ψi⟩⟨ψi| w/

∑
i

pi = 1

• Substate description, simply take partial trace over
unwanted subsystem

ρA = TrB(ρAB)
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Partial Trace I
The partial trace is the trace over a subspace of a composite state
space. This has the physical interpretation of ’forgetting’ about
some other part of a system and only concentrating on some
particular subsystem.

The resulting state is termed the reduced density matrix and
describes our state of knowledge of the subsystem. This reduced
state is also interpretable as that left over after averaging over all
measurements on the forgotten subspace.
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The partial trace is the trace over a subspace of a composite state
space. This has the physical interpretation of ’forgetting’ about
some other part of a system and only concentrating on some
particular subsystem.

The resulting state is termed the reduced density matrix and
describes our state of knowledge of the subsystem. This reduced
state is also interpretable as that left over after averaging over all
measurements on the forgotten subspace.



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Partial Trace II
For separable states, the partial trace takes the simple form:

ρA = TrB (ρA ⊗ ρB) = ρA ⊗ Tr(ρB)

Example As a simple example, consider the two qubit density matrix:

ρ =
1
2
(|00⟩⟨00| + |10⟩⟨10|)

Now, for reasons that will be conducive to the example, we may rewrite the above state as the
tensor product state:

ρ =
1
2
(|0⟩⟨0| + |1⟩⟨1|)1 ⊗ (|0⟩⟨0|)2

with the tensor product structure explicitly labeled as subscripts. Now, we take the partial trace
over the first qubit’s state space, as follows:

Tr1(ρ) = ⟨0|1ρ|0⟩1 + ⟨1|1ρ|1⟩1 = |0⟩⟨0|

where we may now omit the subscript in the output since the result is a one-qubit state.

Note that the state need not be separable to perform the partial
trace.
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Why the Partial Trace?

One may now ask: Why does the partial trace describe
states of knowledge of subsystems?

This can be intuited in the context of measurement. If we
have a subsystem known to be in a eigenstate of a certain
operator representing a measurement, then measurement of
that subsystem should yield that eigenstate with certainty,
regardless of the larger composite state.
Essentially, the partial trace is the unique operation that
preserves the relevant, expected measurement statistics of
subsystems.
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operator representing a measurement, then measurement of
that subsystem should yield that eigenstate with certainty,
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Time Evolution

Basic quantum physics tells us that the time derivative of an
isolated state (in the Schrodinger picture) is of the following form:

d|ψ⟩
dt =

1
i~H|ψ⟩

where H is the Hamiltonian of the system, and which is
Hermitian. We often simplify the above by choosing ~ = 1.

This has a solution of the form below,

|ψ(t)⟩ = e−iHt/~|ψ(0)⟩
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Unitary Transformations
The generators of unitary operators are Hermitian operators.

Thus, as in Postulate 2: The evolution of any state over a
finite period of time is describable by a unitary
transformation U:

|ψ(t2)⟩ = U(t1, t2)|ψ(t1)⟩

where U(t1, t2) = e−iH(t2−t1)/~. (Like the time evolution
operator, which may be solved for perturbatively using
Dyson series/Feynman diagrams)

Similarly, an arbitrary density operator evolves as:

|ψ(t2)⟩⟨ψ(t2)| = U(t1, t2)|ψ(t1)⟩⟨ψ(t1)|U†(t1, t2)

⇒ ρ→ UρU†
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Measurement in Detail

Perhaps the most unique component of quantum mechanics
that stands in contrast to usual linear algebra is the
postulate of measurement.

The most common formalism used to describe measurement
operators is that of projective measurments, though a more
general model is that of positive operator-valued
measurements (POVM).
POVM are equivalent to projective measurements on a larger
space along with unitary transformations (see Naimark’s
Dilation Theorem). They’re like the ’mixed states of
measurements’.
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Perhaps the most unique component of quantum mechanics
that stands in contrast to usual linear algebra is the
postulate of measurement.
The most common formalism used to describe measurement
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general model is that of positive operator-valued
measurements (POVM).
POVM are equivalent to projective measurements on a larger
space along with unitary transformations (see Naimark’s
Dilation Theorem).
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Measurement in Detail

Perhaps the most unique component of quantum mechanics
that stands in contrast to usual linear algebra is the
postulate of measurement.
The most common formalism used to describe measurement
operators is that of projective measurments, though a more
general model is that of positive operator-valued
measurements (POVM).
POVM are equivalent to projective measurements on a larger
space along with unitary transformations (see Naimark’s
Dilation Theorem). They’re like the ’mixed states of
measurements’.
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Measurement in Detail: General Measurements

A measurement of a quantum system is most generally
described as a set of measurement operators {Mm} (with m
denoting a possible measurement outcome m) that satisfy
the completion relation:∑

m
M†

mMm = I

with measurement outcome m occuring after measuring
state |ψ⟩ and yielding state |ψm⟩ with probability p(m).

|ψm⟩ =
1√

p(m)
Mm|ψ⟩ w/ p(m) = ⟨ψ|M†

mMm|ψ⟩

Note that the completeness relation enforces that all our
possible outcomes’ probabilities sum to one.
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Measurement in Detail: Projective Measurements I
Projective measurements are described by some Hermitian
operator, decomposable (via the Spectral decomposition
theorem) as:

M =
d∑

m=1
λmPm

where Pm is a projection operator onto the eigenspace of M
corresponding to eigenvalue λm.

Projection Operators: Projection operators are Hermitian op-
erators that project states onto their subspaces. Explicity, for
some n-dimensional subspace k spanned by the (orthonormal)
basis {|i⟩}, projection operators have the form:

Pk =
n∑

i=1
|i⟩⟨i|
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Measurement in Detail: Projective Measurements II

Application of the measurement operator results in output
state corresponding to measurement outcome m with
probability pm, as below:

|ψ⟩ → |ψm⟩ =
Pm|ψ⟩√pm

w/ pm = ⟨ψ|Pm|ψ⟩

For density matrices, we then have the post-measurement
state:

PmρP†
m

Tr
(

PmρP†
m
) w/ pm = Tr

(
PmρP†

m

)
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Measurement in Detail: Positive-Operator Valued Measurements

POVMs describe a more general picture of measurements
(i.e. lack of repeatability, inconclusive results, etc.)

Next time!
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Interacting/Simultaneous Systems I

But what if we have several subsystems we’d like to describe
with one, larger, state?

As in Postulate 4: States of composite systems, where the
i-th subsystem is know to be in state |ψi⟩ are described
jointly by the tensor product of all the substates

|ψ1⟩ ⊗ |ψ2⟩ ⊗ ..⊗ |ψn⟩

In the language of density operators: for a composite system
where each substate is known to be in state ρi, the total
state is describable as the tensor product of them

ρ1 ⊗ ρ2 ⊗ ...⊗ ρn
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In the language of density operators: for a composite system
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with one, larger, state?

As in Postulate 4: States of composite systems, where the
i-th subsystem is know to be in state |ψi⟩ are described
jointly by the tensor product of all the substates

|ψ1⟩ ⊗ |ψ2⟩ ⊗ ..⊗ |ψn⟩

In the language of density operators: for a composite system
where each substate is known to be in state ρi, the total
state is describable as the tensor product of them

ρ1 ⊗ ρ2 ⊗ ...⊗ ρn
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Interacting/Simultaneous Systems II

While not all states can be written as a tensor product of
states in the respective subsystem, the total state space is
the tensor product space of the two Hilbert spaces.

HAB = HA ⊗HB

States that are representable as two substates tensored
together are termed separable. This doesn’t have a
clear/easy criteria by which to determine whether a given
state is separable (except in two-qubit spaces by the
Peres–Horodecki criterion).
Non-separable states are considered entangled, but a true
’measure’ of entanglement in general is still nebulous.
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Interacting/Simultaneous Systems III

Example As a simple example of the tensor product, consider the tensor product of the two 2 × 2
matrices below:

[
1 2
3 5

]
⊗

[
7 11
13 17

]
=


1 ·

[
7 11
13 17

]
2 ·

[
7 11
13 17

]

3 ·
[

7 11
13 17

]
5 ·

[
7 11
13 17

]
 =


7 11 14 22
13 17 26 34
21 33 35 55
39 51 65 85



We also may take the tensor product of vectors, as in the case of pure states. As an example,
consider the case below:

[
1
3

]
⊗

[
5
7

]
=


1 ·

[
5
7

]

3 ·
[

5
7

]
 =


5
7
15
21


Note that not every four-by-one vector is representable as the tensor product of two two-by-one

vectors. As an example, consider the bell state |+⟩ = 1√
2
(|0⟩ + |1⟩):

|+⟩ =
1

√
2


1
0
0
1

 ̸= |ψ1⟩ ⊗ |ψ2⟩ ∀ |ψ1⟩, |ψ2⟩

Note that the matrix form of the tensor product given in the example is
also referred to as a Kronecker product or matrix direct product.
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Why the Tensor Product?

The tensor product is the natural choice for the packaging of
related states since we may act on subsystems individually by
taking the tensor product of our subsytem’s operator and
identity in the rest.

|ϕ⟩ ⊗ |ψ⟩ −→ (I⊗ U)(|ϕ⟩ ⊗ |ψ⟩)

↓ Trϕ

|ψ⟩ −→ U|ψ⟩



QIS/QCS Seminar

Alex Heilman

Overview

Quantum
Mechanics
State Space
Time Evolution
Measurement
Composition of States

Quantum
Operations

Circuit Model

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Evolution I

We may now construct a more general picture of arbitrary
quantum time evolution that takes density matrices to
density matrices.
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General Evolution II

Imagine we have some small system we’re interested in, but it
inevitably interacts with some larger system we’ll term the
environment.

ρ→ ρ⊗ ρEnv.

It then evolves in concert with this larger system according to a
unitary transformation:

ρ⊗ ρEnv. → U(ρ⊗ ρEnv.)U†

However, we still only care about and measure the subsystem,
hence we end up with a reduced density matrix:

U(ρ⊗ ρEnv.)U† → TrEnv.
[
U(ρ⊗ ρEnv.)U†]
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General Evolution III

So, in total, a more general map of evolution follows a form
similar to that below:

ρ→ ρ⊗ ρEnv. → U(ρ⊗ ρEnv.)U† → TrEnv.
[
U(ρ⊗ ρEnv.)U†] = ρ′

The most general maps that returns arbitrary quantum
states (and act on density operators) are those of
completely-positive linear maps.
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General Evolution III

So, in total, a more general map of evolution follows a form
similar to that below:

ρ→ ρ⊗ ρEnv. → U(ρ⊗ ρEnv.)U† → TrEnv.
[
U(ρ⊗ ρEnv.)U†] = ρ′

The most general maps that returns arbitrary quantum
states (and act on density operators) are those of
completely-positive linear maps.
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Quantum Circuit Model

Inspired by electronic circuits, we may define many quantum
algorithms in terms of neat diagrams describing a system’s
state evolution and measurements.
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Wires/Initialization

Each wire in a quantum circuit represents a qubit/qudit.
They’re often taken to be initialized in some pure state |0⟩
and tensored together.
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Gates from Hamiltonians

Quantum computation often takes advantage of a set of
gates to construct algorithms. Schrodinger’s equation tells
us the form of the state’s time derivative (Schrodinger picture).

So, for each gate, we need a corresponding Hamiltonian that
will generate it, and a period of time over which the
Hamiltonian’s action will coincide with the desired unitary
action.
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Localized Gates

Gates only act on the state space of the qubits contained
within their diagramatic box, acting as identity on all the
other qubits.

In the example above, U1 acts only on the first qubit, so it acts as
U1 ⊗ I on the total statespace; whereas U2 acts on both qubits
and hence may not even be decomposable as a tensor product of
two local gates. U1 then would be said to be a ’local’ gate, acting
locally only on the first qubit.
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Measurement

Measurement may then be performed on each qubit, as
desired, with the convention being that measurements are
performed in the computational basis

(of course, we may
always apply some unitary operation prior to measurement
to effectively change basis)
More often than not in the circuit model, the output state is
discarded and only the measurement outcome is treated.
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Measurement

Measurement may then be performed on each qubit, as
desired, with the convention being that measurements are
performed in the computational basis (of course, we may
always apply some unitary operation prior to measurement
to effectively change basis)

More often than not in the circuit model, the output state is
discarded and only the measurement outcome is treated.
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Measurement

Measurement may then be performed on each qubit, as
desired, with the convention being that measurements are
performed in the computational basis (of course, we may
always apply some unitary operation prior to measurement
to effectively change basis)
More often than not in the circuit model, the output state is
discarded and only the measurement outcome is treated.
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Recap

• Qubits and qudits

, really just finite-dimensional QM

• Pure states and ensembles, how to transfer between them
and advantages of density operator formalism

• Consider more general set of quantum operations and
measurements, describes quantum channels and gives
potential model for noise

• Package the more basic elements into neat ’circuits’,
allows for succinct description of quantum algorithms
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• Pure states and ensembles, how to transfer between them
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• Package the more basic elements into neat ’circuits’

,
allows for succinct description of quantum algorithms
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Next time

• What to look for in prospective qubit realizations
• Basic physics of some real-world examples
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