
Notes
December 22, 2022

Quantum Neural Networks

with a 2x3x2 simulated example in Qutip

Alexander Heilman

Northeastern University
Boston, Massachusetts

December 17, 2022

ABSTRACT

Classical neural networks have shown great efficacy in many tasks, suggesting an analogous quantum neural network may have
some utility. Furthermore, in the Noisy Intermediate-Scale Quantum era (NISQ), algorithms that act on small states are desired due
to hardware limitations. Quantum Neural Networks, as proposed in Beer et al. (2020), can be used to learn arbitrary, completely
positive, linear maps (i.e. quantum operations) between quantum ensembles, given an appropriate data set to train on, and which
require relatively small quantum states to be acted upon at a time.

Key words. Quantum Neural Networks, QuTip

Introduction & Motivation

Classical neural networks are seemingly ubiquitous in the mod-
ern research landscape due to an apparent efficacy in many pre-
dictive and generative roles.

Thus, with quantum computers on the bleeding edge of re-
search, some have sought after a quantum analogy to the clas-
sical neural network architecture. One proposed framework is
that in Kerstin Beer, et al’s Training Deep Quantum Neural Net-
works, that which is discussed in the content below.

But first, a brief background passage will be included in an
attempt to justify the following architecture, both in terms of
generality and feasibility.

Quantum Operations

The most general evolution a quantum system may undergo is
that of a completely positive linear map. This includes not only
the unitary evolution of quantum pure states but also the evo-
lution of a quantum subsystem or principle system interacting
and evolving in accordance with the unitary evolution of some
grander quantum system or environment, which may be consid-
ered closed itself (if large enough; since density matrices may
always be purified in some larger space).

This evolution of the subsystem’s state in accordance with
some environment then is representable as a three step process:
first a tensor product of the subsystem’s state space and the envi-
ronment’s state space is taken; then some unitary operation acts
on this tensor product space; and finally, the subsystem’s state
may be regained by restriction back to it’s state space via a par-
tial trace over the environment’s state space.

ρ→ ρ ⊗ ρEnv. → U(ρ ⊗ ρEnv.)U† → TrEnv.

[
U(ρ ⊗ ρEnv.)U†

]
= ρ′

Thus, a most general framework for an arbitrary, unknown quan-
tum operation must allow for the total action of tensoring with ar-
bitrary sized environment’s state, unitary evolution in this larger
space, and restriction back down to the subsystem.

If one could construct an arbitrarily wide quantum system
though (i.e. tensor with an arbitrarily large environment with
high fidelity), this should only need be done once, in which state
a large unitary would act and the restriction back down would be
made. This should render a layered structure unnecessary. How-
ever, given modern hardware limitations, large product states are
hard to hold onto, with very short coherence times, and also are
hard to act on with large enough unitaries (with these generally
broken down into swap gates and relatively local actions on 2
or 3 qubits). Hence, modern limitations justify a model that re-
quires the handling of smaller numbers of elements at a time,
which justifies a deeper circuit that can simulate restrictions from
larger environments by iterative tensorings and restrictions.

1. General Mathematical Structure

With the above considerations in mind justifying a deep network
with small width layers (where we consider only a few qubits at
a time) and a requirement that we consider these larger evolution
schemes at all (in hopes of generality), we now detail the imple-
mentation of a Quantum Neural Network (QNN) as proposed in
Beer, et al.

In conjunction with the description of classical neural net-
works, we first introduce the relevant types of data; then consider
what a forward pass of the network is; define some cost function
by which we may quantitatively judge the network; and finally
discuss how to train the network to improve the cost.

1.1. Data

Data will be provided for the training of the network via a set
of arbitrary states (inputs), and the set of these same states after
having some common unitary action act upon them (outputs).
For pure states, the training data may take the following form:

Training Data: {(|ψi⟩,V |ψi⟩) | 1 ≤ i ≤ N}

Article number, page 1 of 7

But in general, data of some well defined operation may be
given, described in the density matrix formalism, as below:

Training Data: {(ρi, ε(ρi)) | 1 ≤ i ≤ N}

where ε(ρ) represents some general operation, on the density
matrix ρ, satisfying the physical condition of being a linear com-
pletely positive map.

Note: Why the Partial Trace?

The partial trace returns a density matrix describing a sub-
system of a larger quantum system. The returned state es-
sentially represents the subsystem’s quantum state if the
observer ’forgets’ about those subsystem’s traced over, or,
equivalently, the state relevant to an observer who can only
interact with that subsystem left after the trace.

Example As a simple example, consider the two qubit den-
sity matrix:

ρ =
1
2

(|00⟩⟨00| + |10⟩⟨10|)

Now, for reasons that will be conducive to the example, we
may rewrite the above state as the tensor product state:

ρ =
1
2

(|0⟩⟨0| + |1⟩⟨1|)1 ⊗ (|0⟩⟨0|)2

with the tensor product structure explicitly labeled as sub-
scripts. Now, we take the partial trace over the first qubit’s
state space, as follows:

Tr1(ρ) = ⟨0|1ρ|0⟩1 + ⟨1|1ρ|1⟩1 = |0⟩⟨0|

where we may now omit the subscript in the output since
the result is a one-qubit state. Note that the state need not
be separable to perform the partial trace.

1.2. Forward Pass

We now define the action of a QNN as defined in Beer et al.
(2020). The overall action of the network is composed of layer-
to-layer transition maps ϵℓ for each layer ℓ s.t. in ≤ ℓ ≤ out.
Each layer may have a different number of nodes, or associated
qubits mℓ, so at the end of each layer we have an mℓ qubit state
represented as ρℓ+1. Explicitly, the ℓ-th layer’s transition map
takes the form:

ϵℓ (ρℓ−1) =

Trℓ−1

 mℓ∏

m=1

Uℓ
m

 ((|0⟩⊗mℓ⟨0|⊗mℓ

)
ℓ
⊗ ρℓ−1

) 1∏
m=mℓ

Uℓ†
m

= ρℓ

This layer-to-layer map allows us to define the total action of
some QNN as a iterative composition of such maps. Hence, a to-
tal circuit of L layers returns ρout, defined below, for some given
input state ρin.

ρout = ϵ
out
(
ϵL
(
ϵL−1
(
...ϵ1 (ρin) ...

)))
Note that while the width of each intermediate layer is arbitrary,
for data sets based on purely unitary evolution the state space of

the input and output layers must be equal in size. That is, while
the model’s architecture is arbitrary in the intermediate layers,
the input and output dimensions are dictated by the form of the
data.

1.2.1. Forward Pass: Step-by-Step

To elucidate the somewhat dense form of the layer-to-layer tran-
sition map, we may further break each layer’s action into three
effective steps (reminiscent of the form of the general quantum
operation given in the introduction).

For each layer ℓ, the corresponding transition map to the next
layer εℓ : ρℓ−1 → ρℓ may be broken into the following steps:

1. The next layer’s mℓ qubits are prepared in the initial state
|0⟩⊗m⟨0|⊗m

ℓ
and tensor producted with the previous layer’s

output ρℓ−1.
ρ′ℓ =

(
|0⟩⊗mℓ⟨0|⊗mℓ

)
ℓ
⊗ ρℓ−1

2. The ℓ-th layer’s mℓ associated unitary matrices Uℓ
m are ap-

plied to this tensor product state (from top to bottom).

ρ′′ℓ =

 mℓ∏
m=1

Uℓ
m

 (ρ′ℓ)
 1∏

m=mℓ

Uℓ†
m

3. The partial trace over the (ℓ − 1)th layer’s Hilbert space is

taken, resulting in the output state ρℓ of the ℓ-th layer.

ρℓ = Trℓ−1[ρ′′ℓ]

Note that, as defined in Beer et al. (2020), the constituent
unitary Um

ℓ acts only on the state space of the m-th qubit in the
ℓ-th layer as well as all the qubits of the ℓ−1-th layer, and hence
has a dimension of 2mℓ−1+1 × 2mℓ−1+1 (where it acts as the identity
on the otherwise excluded state space).

Furthermore, since these unitaries won’t necessarily com-
mute in general, the order must be specified, where the conven-
tion adopted by the authors is to apply the unitaries from ’top to
bottom’ in that first U1

ℓ is applied, then U2
ℓ , etc.

1.3. Cost

The metric by which we will judge the performance of the net-
work on the training data is the cost, here taken as the average
fidelity between the networks output state and the corresponding
state given in training and explicitly defined as:

C =
1
N

N∑
i=1

⟨ψout
i |ρout |ψ

out
i ⟩

Note that this cost function is only applicable for training data
based on pure states, for which the fidelity takes an especially
nice form.

For data based on mixed states, we may replace the above
with an averaged fidelity between output and target states of the
form:

C =
1
N

N∑
i=1

(
Tr
[√
√
ρiρ

out
i
√
ρi

])2
which, again, is just the averaged fidelity between the given
training output and their corresponding outputs from the net-
work.

Article number, page 2 of 7

Alexander Heilman: Quantum Neural Networks

Fidelity is a natural choice for a cost function here since it is a
metric already well known within quantum information science
as an effective way to measure how similar two density matrices
are. In fact, in the case of pure states, the fidelity reduces to the
inner product between the states squared.

1.4. Training

We now wish to maximize the previously defined cost function
(which has a maximum value of 1). This may be accomplished
through training.

Training may be performed by evolving each unitary via the
following map:

Uℓ
m → e−ϵKℓ

m Uℓ
m

which is parameterized by the step size ϵ, and where Km
ℓ is de-

rived from the derivative of the cost function and takes the fol-
lowing form:

Kℓ
m = η

2mℓ−1

N

N∑
i=1

Tr¬ℓ,m

[m∏
n=1

Uℓ
n

 ((|0⟩⊗mℓ ⟨0|⊗mℓ
)
ℓ
⊗ ρℓ−1

i

) 1∏
n=m

Uℓ†
n

 , m+1∏
n=mℓ

Uℓ†
n

 (σℓi ⊗ Iℓ−1
) mℓ∏

n=m+1

Uℓ
n

]

where the square brackets denote a commutator and σℓi =

F ℓ+1(...F out(ρout
i)...) is the adjoint channel to the layer-to-layer

transition map ϵℓ for layer ℓ. Note that the ρout
i used for the train-

ing matrix is that provided in the training data.

Note: Discrepancy with Original Paper

In the original paper, the update matrix acts on it’s unitary,
much as a generator of a Lie algebra acts on it’s associated
group elements, as below:

U → eiKU

a convention which we’ve neglected to adopted here. How-
ever, by this definition K must be Hermitian for U to re-
main unitary; and in the original paper, K, as defined, is
skew-Hermitian. This requires us to either add a complex
factor of i to K or to remove the factor of i from the map.
We choose to do the latter here. In fact, upon analysis of
their associated code, the authors neglect both factors of i
and hence update according to the map U → e−KU as well.

Proof It is well known that products of unitaries are unitary
and that the generators of unitaries are Hermitian. However,
by the construction of K (according to the same authors)
K is the commutator of two density matrices, which are
Hermitian. However the commutator of two Hermitians is
skew-Hermitian.

[A, B]† = (AB − BA)† = B†A† − A†B† = −[A, B]

and hence, by the defined map, K must also be multiplied
by an extra factor of the complex unit i to make it Hermi-
tian.

The derivation of the above form of the training matrix
is rather involved and beyond the scope of this overview. For
more information, see the supplementary resources of Beer et al.
(2020).

1.4.1. Adjoint Layers

Note that the training matrices require the computation of the
network’s associated adjoint layers, which are similar to the
backward pass of a classical network.

The adjoint map for layer ℓ + 1 is defined as the map tak-
ing a state in the ℓ + 1-th layer to the corresponding state in the
ℓ-th layer (effectively undoing the action of transition map ε).
Explicitly, it takes the following form:

F ℓ+1(ρℓ+1) =

Trℓ+1

((|0⟩⊗mℓ+1 ⟨0|⊗mℓ+1
)
ℓ+1 ⊗ Iℓ

) mℓ+1∏
m=1

Uℓ+1†
m

 (ρℓ+1 ⊗ Iℓ)

 1∏
m=mℓ+1

Uℓ+1
n

= ρℓ

where Iℓ is the 2mℓ dimensional identity, apparently unnormal-
ized to trace one.

2. Explicit Example: 2 × 3 × 2 QNN

When first encountering novel mathematical structures, it is gen-
erally instructive to consider a simple example in an attempt to
build some intuition for such structures. Hence, we now restrict
our discussion to a specific, small QNN (but not too small to be
uninteresting); for this purpose we choose a three layer network
with a two-qubit input and output layer, and one three-qubit in-
termediate layer.

This is a reasonable size network to consider as an example,
in that it consists of wider intermediate layers than the input and
output states, so it can be taken to consider an environment larger
than the given state, but it is small enough to explicitly write out
the previously described operations in terms of it’s respective
components, without being entirely unwieldy.

Fig. 1. Diagrammatic Representation of 2x3x2 QNN: Under the dia-
gram representing the network structure, the output state ρout for some
given ρin is displayed after it’s forward pass through the network. The
constituent unitaries are color coded to match edges connected to the
nodes they act upon.

Since there are 3(int) + 2(out) = 5 qubits beyond the input
layer, there are 5 constituent unitaries composing the QNN: with
U1

1 , U1
2 , and U1

3 for the intermediate layer; and with Uout
1 and

Uout
2 for the final layer. Unitaries for the intermediate layer U1

m
then act non-trivially on a state space of dimension 22+1 × 22+1

but are tensored with identity in the rest, resulting in a matrix of
dimension 22+3×22+3. Similarly, unitaries for the output layer U1

m
then act on a state space of dimension 23+1×23+1 but are tensored
with identity in the rest, resulting in a matrix of dimension 23+2×

23+2.
These 5 unitaries then require us to construct 5 training ma-

trices Kℓ
m, each corresponding uniquely to one of the above uni-

taries.

Article number, page 3 of 7

2.1. Forward Pass: 2 × 3 × 2

The forward pass of the 2x3x2 QNN is now able to be printed
explicitly as the following map :

ρin → ρout =

Tr1
[
U2

2U2
1

(
Trin
[
U1

3U1
2U1

1 (ρin ⊗ |000⟩⟨000|1) U1†
1 U1†

2 U1†
3

]
⊗ |00⟩⟨00|2

)
U2†

1 U2†
2

]
(where Uout is used interchangeably with U2). Again, note that
the constituent unitaries Uℓ

m act only on the entire last layer’s
state space as well as the m-th qubit of the current ℓ-th layer.
So, for example, U1

2 acts on the input space and the second qubit
of the intermediate layer, and acts as identity on the other two
qubits of the intermediate layer; while U1

1 acts on the input space
and the first qubit of the intermediate layer, and then acts as iden-
tity on the rest, etc.

2.2. Training: 2 × 3 × 2

We now construct the training matrices for enough of the uni-
taries for the pattern to be apparent (in the sake of brevity). Note
that the for the output layer’s unitaries, the adjoint layer is effec-
tively the identity map, and so ρout appear explicity as opposed
to an element of the adjoint channel.

For the intermediate layer’s unitaries, we then have the cor-
responding training matrices:

K1
1 = η

22

N

N∑
i=1

Tr2,3int

[
U1

1

(
ρin

i ⊗ |000⟩⟨000|1
)

U1†
1 ,U1†

2 U1†
3

(
I22 ⊗ σ1

i

)
U1

3U1
2

]

K1
2 = η

22

N

N∑
i=1

Tr1,3int

[
U1

2U1
1

(
ρin

i ⊗ |000⟩⟨000|1
)

U1†
1 U1†

2 ,U1†
3

(
I22 ⊗ σ1

i

)
U1

3

]

K1
3 = η

22

N

N∑
i=1

Tr1,2int

[
U1

3U1
2U1

1

(
ρin

i ⊗ |000⟩⟨000|1
)

U1†
1 U1†

2 U1†
3 ,
(
I22 ⊗ σ1

i

)]
And then for the output layer’s unitaries, we have the corre-
sponding training matrices:

Kout
1 = η

23

N

N∑
i=1

Tr2out

[
Uout

1

(
ρint

i ⊗ |00⟩⟨00|out
)

Uout†
1 ,Uout†

2

(
I23 ⊗ ρout

i

)
Uout

2

]

Kout
2 = η

23

N

N∑
i=1

Tr1out

[
Uout

2 Uout
1

(
ρint

i ⊗ |00⟩⟨00|out
)

Uout†
1 Uout†

2 ,
(
I23 ⊗ ρout

i

)]
where ρint

i = ε1(ρin
i), ρout

i = εout(ε1(ρin
i)), and σ1

i = F
out(ρout

i),
with ρout

i again being from the training data.

2.2.1. Adjoint Layer: 2 × 3 × 2

For each intermediate layer, we must construct the associated ad-
joint layer to implement the training matrices, as defined above.

Since there is only one intermediate layer for the given struc-
ture, there is only one relevant adjoint map, analogous to a back-
ward pass from the output layer to the intermediate layer. We
now define this adjoint map as follows:

F out(ρout) =

Trout

[
(|00⟩⟨00|out ⊗ I23) Uout†

1 Uout†
2 (ρout ⊗ I23)Uout

2 Uout
1

]
= ρint

3. QuTip Simulation: 2 × 3 × 2 QNN

With the explicit structures of the example 2 × 3 × 2 QNN
now given, we shall demonstrate the performance of this exam-
ple model on a set of data by simulating it’s learning process
for some set of data. To accomplish this simulation, we choose
QuTip, a python module that is designed for general quantum
information science applications.

3.1. Implementation in QuTip

The implementation require a few sets of functions and routines
to be defined: first, a small set of helper functions; then, the for-
ward pass function; the cost function; a way to define some set
of data; and the adjoint layer and training matrices.

3.1.1. Helper Function

To implement the example network in QuTip, we define a few
helper functions. The first, and most important, is that which al-
lows us to properly size the unitaries Uℓ

m, such that the unitaries
act on the appropriate subspaces of the total system.
This operation is performed by the swapper function, which gen-
erates a permutation index applicable to QuTip’s permutation
method for quantum objects.

Note: Tensor Structure of Unitaries

Recall that the unitary Uℓ
m acts on the (ℓ − 1)-th layer’s entire sub-

space but only the m-th qubit of the ℓ-th layer.
Since QuTip only allows us to take the tensor product of the

composite objects first, which results in the first structure below
(before swap). Then, we must swap the unitary’s last subspace of
operation to the relevant qubit’s subspace, i.e. the (mℓ−1 + m)-th
subspace.

Essentially, we need to be able to swap the the tensor structure
of the unitary after tensoring it with identity, as follows:

U (1) ⊗ U (2) ⊗ ... ⊗ U (mℓ−1) ⊗ U (mell−1+1) ⊗ I ⊗ ... ⊗ I

↓ S wapm

U (1) ⊗ U (2) ⊗ ... ⊗ U (mℓ−1) ⊗ I ⊗ ... ⊗ I ⊗ U (mℓ−1+m) ⊗ I ⊗ ... ⊗ I

Dims in QuTip The composite tensor structure of an object in
QuTip is encoded in it’s dims method, which returns a list of lists
describing the dimensionality, and implicit order, of its subsys-
tems.

This is relevant since these dims must reflect an n-qubit oper-
ation as opposed to one operation on a 2n dimensional space in
order for us to transform the matrix representation accordingly.

Article number, page 4 of 7

Alexander Heilman: Quantum Neural Networks

This then allows us to define unitaries with the appropriate ten-
sor structure such that they may be applied appropriately to the
intermediate states.

3.1.2. Data

For the simulation of the network, a set of relevant training and
test data needed to be generated. This was accomplished by
forming a list of two lists: a list of randomly generated density
matrices, using QuTip’s native random density matrix function;
and a list of a randomly generated unitary applied to the corre-
sponding density matrix.

Data Structure: {(ρi,VρiV† | 1 ≤ i ≤ N}

Note that the same unitary was used for all the training data,
except for in the noisy section, for which a new random unitary
acting on an additional set of random density matrices was mixed
in with the training data at some set dilution.

In general, a larger set of training data than test data was used
since both scaled similarly in simulation time and a small set of
test data was still relevant given it’s independence.

3.1.3. Forward Pass

The forward pass function was a straight-forward function tak-
ing as input the set of training data inputs, before the unkown
unitary operation, and 5 unitaries: 3 of dimension 23 × 23, and
2 of dimension 24 × 24. These unitaries were first converted into
the appropriate tensor structure via the helper function discussed
above.

Then, for each layer: the appropriate intermediate states were
formed (pin1, pint1 below); the corresponding unitaries were ap-
plied from top to bottom (pin2, pint2); and the relevant partial
trace was taken to leave the layer’s output state (pint, pout).

Note that QuTip’s partial trace method for quantum objects takes
as argument the list of indices of subspaces to keep after the par-
tial trace is performed.

3.1.4. Cost

Cost was simply defined using an averaged fidelity, summing
over QuTip’s natively defined fidelity applied to training and out-
put pairs, then dividing the sum by the length of the data list. A
cost was calculated for both a set of training data used in the for-
mulation of the update matrices, as well as an independent set of
test data which the update process was blind to.

3.1.5. Adjoint Layer & Training Routine

The functions implemented for the adjoint layer and training ma-
trices had a similar structure to the forward pass, with arguments
representing, the input states to each layer, the adjoint states to
each layer, and the current constituent unitaries.

Training was done through an iterative update of the con-
stituent unitaries via the map discussed previously. For each
epoch, the training matrices are derived from the entire train-
ing data set for the current unitaries. These are then updated at
the beginning of the next epoch, as below.

Note that QuTip has a native method for matrix exponentiation
of appropriate quantum objects (callable by .expm()) .

3.2. Results

First and foremost, the cost vs. epoch data showed a clear trend
overall in a direction suggesting the network is somehow ’learn-
ing’ to simulate the action of the unknown unitary evolution.

A few different experiments with the model network were
run: first consisting of clean data with varied parameters, and
then the effects of noisy data investigated.

3.2.1. Clean Data

Clean data was used to experiment with parameters and compare
performance on unseen data.

First the performance between the training and test cost was
compared, as in Fig. 3.2.1, which showed a close correlation be-
tween the two, as should be expected. The test data will then be
used in other experiments to compare performance.

Note: Discrepancies in Results

Through experimentation, three large discrepancies were
noted in the performance of the comparative models: 1. A
much larger learning rate was required for somewhat com-
parable convergence in my implementation of the network;
2. The cost ceiling in training seemed to be lower, in the
range of .96 as opposed to 1; 3. The initial cost of the
randomly chosen training data was much higher than their
data’s.

This may depend on several factors. One suspect feature,
given point 3. is that their method of generating initial, ran-
dom unitaries and training data allowed for better conver-
gence. In fact, their training data was only based on pure
states, whereas mine was chosen from random density ma-
trices. The impact of this factor is supported by a prelimi-
nary test of their model on a similarly generated set of data.

Article number, page 5 of 7

Fig. 2. Simulated Results of 2x3x2 QNN on Clean Data: Above is plot-
ted the cost vs. training epoch for the simulated network for 250 training
pairs over 150 epochs with a set learning rate of ϵ = 0.5 and with η = 1
for all K. Note that the orange line represents the cost for the training
data, while the blue line represents the cost for an independent set of 10
test pairs.

The impact of limited training data on this test data perfor-
mance was then explored for several different sized training sets.
The results can be found in Fig. 3.2.1. The differing performance
based on varied learning rate is shown in Fig. 3.2.1.

Fig. 3. Simulated Results of 2x3x2 QNN on Clean Data with Few Train-
ing Pairs: Above is plotted the cost vs. training epoch for the simulated
network for a different number of a few training pairs over 60 epochs
with a set learning rate of ϵ = 0.5 and with η = 1 for all K. Note that
the orange represent the cost for 5 training pairs, blue 10 training pairs,
green 25 training pairs, and red 50 training pairs; all the costs are for an
independent set of 50 test pairs.

3.2.2. Noisy Data

Finally, the networks performance on independent, clean test
data after training on otherwise clean training data diluted with
with varied quantities of random noise is shown in Fig. 3.2.2.
This noise was generated from completely random unitaries act-
ing on completely random states, and then appended to the clean
training data. The dilution clearly effects the model’s perfor-
mance on the clean test data, although with suprisingly good
results even up to a dilution of 50%.

Conclusion

The example network can clearly be taken as a proof of concept
for the proposed network. For varied cases the network showed

Fig. 4. Simulated Results of 2x3x2 QNN on Clean Data with Differing
Learning Rate: Above is plotted the cost vs. training epoch for the sim-
ulated network for 50 training pairs over 150 epochs with η = 1 for all
K. Note that the orange represent the cost for a learning rate of ϵ = 1,
blue ϵ = 0.5, green ϵ = 0.25, and red ϵ = 0.1; all the costs are for the
same training data.

incremental improvement in the simulation of an arbitrary uni-
tary evolution given some set of representative states.

Further experiments could include deeper networks, wider
networks, and performance on data representative of channels
that require partial traces over larger environments.

This general framework for a circuit may prove useful over
time, even soon in the NISQ era given it’s relatively small qubit
requirements for deeper networks (the largest state being 2n+m

dimensional for the largest pair of adjacent layer qubits n + m).
For more information about quantum neural networks, see

https://alexheilman.com/res/qis/qml. To download
the jupyter notebook used to generate the shown results and
including all the code used, use https://alexheilman.com/
products/projects/qnn/qnn_232.ipynb. To compare to
the original code’s notebook, see https://github.com/
qigitphannover/DeepQuantumNeuralNetworks/blob/
master/DQNN_basic.ipynb

Fig. 5. Simulated Results of 2x3x2 QNN on Noisy Data: Above is plot-
ted the cost vs. training epoch for the simulated network for 200 (with
varied noisy) clean training pairs over 100 epochs with a set learning
rate of ϵ = 0.5 and with η = 1 for all K. Orange represents 0 noisy pairs
in the training, blue 50 noise, green 150 noise, and red 200 noise. The
cost displayed is for an independent set of 30 test pairs corresponding
to the clean data’s operation. Note further that the training was stopped
at a training data cost of .95 (since a perfect match wouldn’t correspond
exactly to the unknown unitary, given noise).

Article number, page 6 of 7

https://alexheilman.com/res/qis/qml
https://alexheilman.com/products/projects/qnn/qnn_232.ipynb
https://alexheilman.com/products/projects/qnn/qnn_232.ipynb
https://github.com/qigitphannover/DeepQuantumNeuralNetworks/blob/master/DQNN_basic.ipynb
https://github.com/qigitphannover/DeepQuantumNeuralNetworks/blob/master/DQNN_basic.ipynb
https://github.com/qigitphannover/DeepQuantumNeuralNetworks/blob/master/DQNN_basic.ipynb

Alexander Heilman: Quantum Neural Networks

References

Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salz-
mann, R., Scheiermann, D., and Wolf, R. (2020). Training
deep quantum neural networks. Nature communications,
11(1):1–6.

Nielsen, M. A. and Chuang, I. (2002). Quantum computation
and quantum information.

Article number, page 7 of 7

	General Mathematical Structure
	Data
	Forward Pass
	Forward Pass: Step-by-Step

	Cost
	Training
	Adjoint Layers

	Explicit Example: 232 QNN
	Forward Pass: 232
	Training: 232
	Adjoint Layer: 232

	QuTip Simulation: 232 QNN
	Implementation in QuTip
	Helper Function
	Data
	Forward Pass
	Cost
	Adjoint Layer & Training Routine

	Results
	Clean Data
	Noisy Data

