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Abstract

Entanglement seems to be an operational feature unique to quantum systems.
In this paper, a specific example of a definitively entangled state will be shown
to exhibit purely classical correlations. The state is defined as a mixed state
parametrized on a path through two qubit space connecting the unpolarized
state with the EPR state. For a range of values of this parametrization, it
will be shown, by the Peres-Horodecki condition, to be entangled. An ana-
lytic expression for the joint probability distribtution of events corresponding
to measurement with Hermitian operators will be constructed. This will then
be shown to be classical for a range of the parameterization that overlaps with
the entangled range.
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1 Introduction

In 1989 Reinhard F. Werner published a paper[1] with a concrete example of
a quantum state that is entangled yet acts classically. We use the specific
parametrized state, ρw, to show that states can be entangled and yet produce
classical correlations regardless of the local projective measurements chosen.

ρw = p |s〉 〈s|+ (1− p) I
4 =


1−p
4 0 0 0

0 1+p
4

−p
2 0

0 −p
2

1+p
4 0

0 0 0 1−p
4


Std.Basis

We consider this state in the framework of a two party model, where two sep-
arated persons make a local measurement on the system simultaneously. Each
person is allowed choice between two prospective measurements, which all have
two outcomes.

ρ
ρA↙ ↘ρB

A B

Q,R ↓ ↓ S,T

λ = ±1 λ = ±1

This small model size is defend-able as it is the basic setting for Bell inequalities.
Thus, it is a large enough framework to observe extra-classical correlations, yet
small enough to be manageable. This is an interesting investigation because
entanglement is one of the fundamental properties of quantum states responsible
for non-classical behaviors, and such an investigation shows entangled states are
not necessarily non-classical.
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2 Preliminaries

Projective Measurements

Projective measurements on quantum states are described by Hermitian oper-
ators. For two dimensional quantum states, called qubits, the Paulis σ0,1,2,3 (a
well known class of two by two matrices) form a basis.

σ0 =

[
1 0
0 1

]
σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
Thus, all local projective measurements, U , on a qubit system can be written
in terms of the Paulis as such:

U = ~u · ~σ = u1σ1 + u2σ2 + u3σ3 =

[
u3 u1 − iu2

u1 + iu2 −u3

]

Where ~u is a unit vector. These local measurements are then simply tensored
together to simultaneously act on the entire system from potentially distant
locations.

U ⊗ V −→ simultaneously measure U and V

Projectors are matrices that project the vector space of the state onto the space
of a certain outcome of the measurement operator. For the Pauli matrices, they
are simply constructed as:

P+ =
1 + ~u · σ

2
P− =

1− ~u · σ
2

Here P+ is the projector onto the λ = +1 eigenspace of U and P− is the projector
onto the λ = −1 eigenspace of U .

Probability of Outcome

The probability of a certain measurement or set of measurements, M , on a
density matrix, ρ, yielding a certain outcome, O, is given by the expression:

P
M→O

= tr(M
O
· ρ) (1)

Here, MO is the projector of measurement M associated with outcome O. For
local projective measurements written in terms of the Paulis, the outcomes
will be labeled +1 and −1, the eigenvalues of the measurement operator (as
the projector will project onto the eigenspaces associated with these λ’s). The
probability of n simultaneous local projective measurements is calculated by
substituting P

⊗n

± for MO.
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Local Hidden Variables

A global section, as defined by Abramsky[2], is analogous to a joint probability
distribution, in that it describes the ’quasi-probability’ of every prospective mea-
surement giving an associated set of outcomes, even if they cannot be performed
simultaneously. For our model, it would describe the probability of Q,S,R, and
T each going to some corresponding outcome (PQRST→±1±1±1±1), an example
of which will be given for the Werner state in Section 3.3. The requirements of a
global section are that all the values sum to one and they marginalize correctly
to the observed probabilities. All quantum models have a global section over
the reals, meaning these quasi-probabilities exist, but they may require the use
of negative entries. Global sections that do not require negative values may
be described with a local hidden variable, and correspond to a scenario that is
classically correlated.

Separability

Separable states are density matrices of the form:

ρ =
∑
i

piρAi ⊗ ρBi (2)

Thus, they are made by taking the kronecker product of density matrices of
smaller systems, and then summing over a probability distribution on them.
So,

∑
i pi = 1

While verifying if a density matrix is separable or entangled is generally a very
hard problem, there thankfully exists an if and only if condition for small sys-
tems. This is known as the Peres-Horodecki condition, or Positive Partial Trans-
pose (PPT), which requires that the partial transpose of the density matrix be
positive. Partial transpose of a 4× 4 matrix follows:




00 01 10 11

00 c00,00 ↙c00,01 c00,10 ↙c00,11

01 c01,00↗ c01,01 c01,10↗ c01,11

10 c10,00 ↙c10,01 c10,10 ↙c10,11

11 c11,00↗ c11,01 c11,10↗ c11,11




I⊗T−→



c00,00 c01,00 c00,10 c01,10

c00,01 c01,01 c00,11 c01,11

c10,00 c11,00 c10,10 c11,10

c10,01 c11,01 c10,11 c11,11




Positivity of the partial transpose can be determined by solving for eigenvalues
of ρpT and checking if they are non-negative. If the eigen-values are non-negative
the state is deemed separable and, therefore, un-entangled (only for small sys-
tems, such as ours). If one or more of the partial transposes eigenvalues are
negative, it is deemed entangled.

3 State Properties
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3.1 Entanglement and Separability

We test the Werner state for separability via the PPT condition outlined in
Section (REMOVE *’s?). Taking the partial transpose of ρ

W
:


1−p
4 0 0 0

0 1+p
4

−p
2 0

0 −p
2

1+p
4 0

0 0 0 1−p
4


 I⊗T−→


1−p
4 0 0 −p

2

0 1+p
4 0 0

0 0 1+p
4 0

−p
2 0 0 1−p

4


And solving for the eigenvalues of ρpT

W
,

det




1−p
4 − λ 0 0 −p

2

0 1+p
4 − λ 0 0

0 0 1+p
4 − λ 0

−p
2 0 0 1−p

4 − λ


 = (

1 + p

4
− λ)

∣∣∣∣∣∣
1−p
4 − λ 0 −p

2

0 1+p
4 − λ 0

−p
2 0 1−p

4 − λ

∣∣∣∣∣∣
= ( 1+p

4 − λ)2
∣∣∣∣ 1−p4 − λ −p

2−p
2

1−p
4 − λ

∣∣∣∣ = ( 1+p
4 − λ)2(( 1−p

4 − λ)2 − p2

4 ) = 0

λ = 1+p
4 , 1+p

4 ,
8(1−p)±

√
82(1−p)2+4(16)(4p2−(1−p)2)

32

We see the smallest value of λ is 8(1− p)−
√

82(1− p)2 + 4(16)(4p2 − (1− p)2)

32
, as p can only take the

values [0, 1]. This value of λ is non-negative for p ≤ 1
3 . Thus, via the PPT

criterion, ρ
W

is definitively separable for this range and entangled for p > 1
3 .

3.2 Outcome Probabilities

Using (1) for the Werner State, ρ
w

, we get the following formula for probabilities
of outcomes with local projective measurements:

P
UV→wy

= tr(U ⊗ V · ρ
w

) = 1
4 (1− pwyχ

uv
) (3)

Here, χuv = ~u · ~v = u1v1 + u2v2 + u3v3 and w, y = ±1. This formula is easy to
verify:

tr

 1
4


(1 + u3)(1 + v3) (1 + u3)(v1 − iv2) (u1 − iu2)(1 + v3) (u1 − iu2)(v1 − iv2)

(1 + u3)(v1 + iv2) (1 + u3)(1− v3) (u1 − iu2)(v1 + iv2) (u1 − iu2)(1− v3)
(u1 + iu2)(1 + v3) (u1 + iu2)(v1 − iv2) (1− u3)(1 + v3) (1− u3)(v1 − iv2)

(u1 + iu2)(v1 + iv2) (u1 + iu2)(1− v3) (1− u3)(v1 + iv2) (1− u3)(1− v3)

·


1−p
4 0 0 0

0 1+p
4

−p
2 0

0 −p
2

1+p
4 0

0 0 0 1−p
4




= 1

16
((1− p)(1 + u3)(1 + v3) + (1 + p)(1 + u3)(1− v3)− 2p(u1 − iu2)(v1 + iv2)
+(1 + p)(1− u3)(1 + v3)− 2p(u1 + iu2)(v1 − iv2) + (1− p)(1− u3)(1− v3))

= 1

16
((1− p)(1 + u3 + v3 + u3v3 + 1− u3 − v3 + u3v3)
+(1 + p)(1 + u3 − v3 − u3v3 + 1− u3 + v3 − u3v3)
−2p(u1v1 + u2v2 − iu1v2 + iu2v1 + u1v1 + u2v2 − iu2v1 + iu1v2))

= 1

16
(4− 4p(u1v1 + u2v2 + u3v3)) = 1

4
(1− p(u1v1 + u2v2 + u3v3))

3.3 Global Section

In a model where each of the two parties is allowed choice between two local
measurements (Q or R for party 1, S or T for party 2), the entries of the global
section are of the form:
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PQRST→wxyz = 1
16 (1−p(wyχQS+wzχQT +xyχRS+xzχRT−wxχQR−yzχST ))︸ ︷︷ ︸

(∗)
Once again, w, x, y, z = ±1. And it is easily seen to marginalize correctly. For
example for PQS→1,1,

= 1
16 (1− p (χQS+χQT +χRS+χRT−χQR−χST ))

+ 1
16 (1− p (χQS−χQT +χRS−χRT−χQR+χST ))

+ 1
16 (1− p (χQS+χQT−χRS−χRT +χQR−χST ))

+ 1
16 (1− p (χQS−χQT−χRS+χRT +χQR+χST ))

= 1
4 (1− p (χQS))

The quantity (∗) can be shown to not exceed 2 (Lemma 1). So, the values of
the global section remain positive for p ≤ 1

2 . This corresponds to a classical
correlation between measurement outcomes for the state in this range of p.

LEMMA 1 Given unit vectors ~q, ~r,~s, and~t, the quantity ~q · ~s + ~q · ~t + ~r · ~s + ~r ·
~t− ~q · ~r − ~s · ~t cannot exceed 2.

Lemma 1 0 ≤ (~q + ~r − ~s− ~t)2

0 ≤ ((~q + ~r)− (~s+ ~t))2

0 ≤ (~q + ~r)2 − 2(~q + ~r)(~s+ ~t) + (~s+ ~t)2

0 ≤ ~q2 + ~r2 + 2(~q · ~r)− 2(~q · ~s)− 2(~q · ~t)− 2(~r · ~s)− 2(~r · ~t) + ~s2 + ~t2 + 2(~s · ~t)

0 ≤ −(~q · ~s)− (~q · ~t)− (~r · ~s)− (~r · ~t) + (~q · ~r) + (~s · ~t) + ~q2+~r2+~s2+~t2

2

(~q · ~s) + (~q · ~t) + (~r · ~s) + (~r · ~t)− (~q · ~r)− (~s · ~t) ≤ 2

∴ (∗) ≤ 2

4 Conclusion

Via the Peres-Horodecki condition the non-separability of the state is deter-
mined. The classical nature of the measurement correlations is proved via ex-
plicit construction of an analytic expression describing the correlations, which is
shown to be non-negative (classical) for another range of values. The parametrized
ensemble ρW is thus shown to be definitively entangled for a range of values over-
lapping the range of values in which it behaves classically. This demonstrates
that entanglement, defined as non-separability, doesn’t necessarily display non-
classical behavior.
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