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The following notes follow Tobias Osbourne’s lectures on Symplectic Geometry and Classical Mechanics

Definition: A locally Euclidean space M of dimension d is a Hausdorff topological space for which every
point p ∈M has a neighborhood homeomorphic to an open subset of Rd.

U

φ(U)

φ

R
n

M

Definition: A differentiable structure F of class Ck (1 ≤ k ≤ inf) on a locally Euclidean space M is a
collection of charts {(Ux, φx)|α ∈ A} satisfying

(i)
⋃
α∈A =M

(ii) φα ◦ φ−1β is Ck for all α, β ∈ A
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φ1 ◦ φ−12

Definition: A differentiable map is a continuous map f between manifoldsM and N such that every chart
(U,ψ) of M and (V, φ) of N , ψ ◦ f ◦ φ−1 is differentiable.
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Definition: Two manifolds M and N are considered diffeomorphic if there exists some differential map f
between them that also has a differentiable inverse.

Compositions of diffeomorphisms are diffeomorphisms themselves, and thus form a group. The group of Ck

diffeomorphisms from some manifold M to itself is denoted Diffk (M).

37:14 for circle group

Definition: A curve is defined as a smooth map from R to the manifold defined for some range (a, b) where
the range is an open set and a < b.
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Definition: A function is a smooth map f from M to R.

R

Mf

φ−1

R
n

The set of functions on some manifold M is a group and denoted F(M) (exactly like the differential
structure).

Definition: The tangent space on some manifold M at some point contained in it p is denoted TpM. It
can be defined at every point p ∈ M as the set of velocity vectors for all possible curves passing through p.
Where two curves that coincide in space at the same time are considered equivalent iff there first derivatives
coincide aswell. Formally,
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(i) Consider M to be Ck (k ≥ 1) with maps φi

(ii) Define now the set of curves γi(t) with an (open) domain (−1, 1) that coincide s.t. γi(0) = p

(iii) Curves are considered equivalent at p iff their first derivatives agree ∂
∂tγi(0) = x at p aswell

(iv) The equivalence classes imposed by (iii) on the first derivatives will be considered the vectors of the
tangent space and are termed as such the tangent vectors

The tangent space at some point TpM can be shown to form a vector space where objects are the instanta-
neous velocity vectors of curves.

TpM
p

M
γ1

γ2

Definition: The tangent bundle TM of some n dimensional differentiable manifoldM is the 2n dimensional
manifold consisting of all points p ∈M packaged with their respective tangent TpM space. Formally,

TM =
⋃
p∈M

p× TpM

Definition: A form of degree 1 (or 1-form) is a linear function from some vector space Rn to R

ω : Rn → R

The space of 1-forms is a vector space itself and considered the dual space to Rn, denoted (Rn)∗

Given a basis (x1, ..., xn) for some vector space Rn there is a natural corresponding basis for 1-forms denoted
(x1, ..., xn). So any 1-form ω in R

n may be written
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x1 x2

dx1

dx2

d

ω =
∑
n

aixi = aixi = aidxi

As a heuristic, dual vectors can be thought of as objects that eat vectors and return scalars from the
underlying field in a linear way. sometimes offering a way to measure vectors?

ωV

ω(V )

Definition: The cotangent space T ∗pM at some point p in manifold M is the dual space to the tangent
space at p.
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T ∗pM

p

M

Elements of the cotangent space are denoted df , and are analagous to incremental changes of functions
f :M→ R via df = ∂f

∂xµ dx
µ. Elements of the tangent space are denoted V , and are analagous to directional

derivatives vµ d
dxµ . Then, df(V ), is the directional derivative of f in the direction of V , i.e. df(V ) = vµ df

dxµ .

Definition: A tensor product space U ⊗ V between two vector spaces U, V is a space specially constructed
such that bilinear maps of the form g : U × V → F correspond naturally to linear maps g̃ : U ⊗ V → F out
of the tensor product space.

Now consider the tensor space characterized by q, r via

Tqr,p(M) = (TpM⊗ TpM⊗ ...⊗ TpM︸ ︷︷ ︸
q

)⊗ (T ∗pM⊗ ...⊗ T ∗pM︸ ︷︷ ︸
r

)

where T ∈ Tqr,p(M) is called a tensor of type (q, r) and is a vector in the vector space Tqr,p(M). A basis
for Tqr,p(M) can be constructed by taking the tensor product of all possible combinations of basis elements,

(xi1 ⊗ xi2 ⊗ ...⊗ xiq )⊗ (xi1 ⊗ ...⊗ xir ), where 1 ≤ i ≤ dim(M). Thus, elements T ∈ Tqr,p(M) have the form

T = T
i1i2..iq
i1..ir

∂

∂xi1
⊗ ...⊗ ∂

∂xiq
⊗ dxi1 ⊗ ...⊗ dxir

and are linear functions on the space
(⊗q

j=1 T
∗
pM

)
⊗ (
⊗r

k=1 TpM).

Definition: A vector field is a mapM→ TpM that assigns a vector to each point in p ∈M smoothly. The
set of vector fields on a manifold M will be denoted X (M)

Definition: A tensor field is a map M → Tqr,p(M) that smoothly assigns each point p ∈ M a tensor of
type (q, r). The set of tensor fields on a manifold M will be denoted Tqr.

Notice T0
0 = F(M) and T1

0 = X (M).

Note: Given some tensor space V ⊗ V ⊗ ...⊗ V , there are two natural subspaces.

The symmetric group on ⊗...⊗ V︸ ︷︷ ︸
n

with the action Sn given by

Sn = {x ∈ Sn ⇐⇒ x ∈ π(1, 2, ..., n)}
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Where π(1, 2, ..., n) : V ⊗ ... ⊗ V → V ⊗ ... ⊗ V is a permutation on V ⊗ ... ⊗ V via π(V1 ⊗ ... ⊗ Vn) =
Vπ(1) ⊗ ... ⊗ Vπ(n). Sn then gives a way to define a symmetric subspace Symn(V ) and an anti-symmetric
subspace

∧n
(V ) as

Symn(V ) ≡ {v|π(v) = v ∀π ∈ Sn}

n∧
(V ) ≡ {v|π(v) = sgn(π)v}

where sgn(π) is defined as (−1)# of transpositions of π

k-forms can then be thought of as the anti-symmetric subspace of the tensor product of some cotangent
space with itself k times

Definition An exterior form of degree k, or k-form, ω is a k-linear anti-symmetric function of k vectors.
Formally,

ω(αχ1 + βν1, ξ2, ...ξk) = αω(χ1, ξ2, ...ξk) + βω(ν1, ξ2, ...ξk)

ω(χπ(1), ..., χπ(k)) = sgn(π)ω(χ1, ..., χn)

Alternatively, ω ∈
∧k

(V ∗). Note that
∧k

(V ) = P−(V ⊗ ...⊗ V ) ≡ 1
k!

∑
π∈Sn Vπ ⊗ ...⊗ Vπ. In consideration

of k-forms there is a natural product to define, namely the exterior product or anti-symmetric product (or
wedge product).

Definition: The exterior product ωk ∧ ωl, where ωk is a k-form and ωl is an l-form, is a (k + l)-form such
that

ωk ∧ ωl = (−1)lωl ∧ ωk

and actions of ωk ∧ ωl on a vector v1 ⊗ ...⊗ vk+l ∈ V ⊗(k+l) is given by

(ωk ∧ ωl)(v1 ⊗ ...⊗ vk+l) =
1

k!

1

l!

∑
π∈S(k+l)

sgn(π)ωk(vπ(1) ⊗ ...⊗ vπ(k))ωl(vπ(k+1) ⊗ ...⊗ vπ(k+l))

and

(ωk ∧ ωl) ∝ P (k+l)
− (ωk ⊗ ω)

A basis for
∧k

(V ) ≡ V ∧ ... ∧ V︸ ︷︷ ︸
k

given a basis ej for V is constructed by

ej1 ∧ ej2 ∧ ... ∧ ejk ; j1 < j2 < ... < jk

As ej ∧ ej = 0 and the operation is antisymmetric so any rearrangement of the same basis elements is at
most changed by a negative phase

For any smooth function f :M→N from one manifold to another, there is an induced map on the respective
tangent spaces, df : TM→ TN .
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γ

R
R

Tγ(t)M

M
N

Tf◦γ(t)N

f

df

L
γ(t)

f ◦ γ(t)

Definition: A manifold M with some atlas A is defined to be orientable iff for any coordinate basis xn for
Ux ∈ A and yn for Uy ∈ A covering M we have

J = det

(
∂xn

∂yk

)
> 0

If an m-dimensional manifold M is orientable there exists some m-form called a Volume Form that is
nonvanishing
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0.1 Problem Set 1

1. (i) A torus is a manifold as it is locally euclidean at every point

(ii) A figure 8 is not a manifold as it intersects itself and at that point is not locally euclidean

(iii) The manifold defined by z − x2 − y2 = 0 requires atleast two charts in R
2

(iv) The real projective space RPn is the set of all lines passing through the origin in R
n+1. Two points

~x, ~y ∈ R
n+1, define the same line if ~x = α~y where α, ~x, ~y 6= 0. This gives us freedom to choose any point

along each line as the representative for that line.

Define Ui to be the set of lines with xi 6= 0 (1 ≤ i ≤ n+ 1). Now define charts φi : Ui → R
n:

φi : (x1, ..., xn+1)→
(
x1
xi
, ...,

xi−1
xi

,
xi+1

xi
, ...,

xn+1

xi

)

For ~x ∈ Ui ∩ Uj , φj ◦ φ−1i =
(
i1xi
xj
, ..., xixj , ...,

ij−1xi
xj

,
ij+1xi
xj

, ..., in+1xi
xj

)
For n + 1 = 2, ~x ∈ U1 ∩ U2, φa ◦ φ−1b =

(
bx1

x2

)
where b is the input coordinate to the transition map and

φa, φb corresponds to x1, x2 respectively. This map is continuous as x1, x2 should never be zero according to
the definition of the charts.

2. (i) Given the circle S1 embedded in R
2 via x2 + y2 = 1 and the charts φ1, φ2:

φ−11 : (0, 2π)→ S1

φ−11 : θ → (cos(θ), sin(θ))

φ−12 : (−π, π)→ S1

φ−12 : θ → (cos(θ), sin(θ))

It is easily seen that the charts overlap only in (0, π), and thus φ1◦φ−12 is defined in this range as θφ2
→ θφ2

+π

(ii) Given S2 embedded in R
3 via x2 + y2 + z2 = 1, stereographic projection onto a plane under the sphere

provides the chart

φs : S2 → R
2

φs : (x, y, z)→ (X =
x

1− z
, Y =

y

1− z
)

Which is well defined everywhere except for z = 1, and thus atleast one more chart is required.

(iii) Polar coordinates also provide a chart ψ : S2 → R
2 for the sphere given by

ψ−1 : (θ, φ)→ (x = sinθcosφ y = sinθsinφ, z = cosθ)

which also fails for one point, θ = 0. Composition of the inverse map of polar coordinates and stereographic
projection then yields

φs ◦ ψ−1 : (θ, φ)→ (X =
sinθcosφ

1− cosθ
, Y =

sinθsinφ

1− cosθ
)

3. (i)Vectors are directional derivatives, scalars are real numbers. Easily seen to satisfy distributivity,
associativity rules satisfied as it would be for functions.

(ii)X[xi(t)] can be interpreted as velocity in the xi direction at time t
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0.2 Problem Set 2

1. (i) See E-L derivation section.

(ii) Given L = 1
2gij(xν)ẋiẋj where gij is given to be a function of position, symmetric in i, j and gikgkj = δij

Applying EL eq.,

d

dt

d

dẋα

(
1

2
gij(xν)ẋiẋj

)
=

d

dxα

(
1

2
gij(xν)ẋiẋj

)
d

dt

d

dẋα

(
1

2
gij(xν)ẋiẋj

)
=

d

dt

(
1

2
gij(δ

α
i ẋ

j + ẋiδαj )

)
=

d

dt

(
gαj ẋj

)
= gαj ẍ

j

d

dxα

(
1

2
gij ẋ

iẋj
)

2. (i.) Given n different 1-forms ωi and a permutation π of {1, ..., n}, show that

π(ω1 ∧ ... ∧ ωn) = sgn(π)ω1 ∧ ... ∧ ωn

Given the wedge product is antisymmetric and the fact that permutations are partitioned by requiring an
odd or an even number of transpositions, it follows that the required rearrangement to achieve π is equal to
(−1)0 if even or 1 if odd.

(ii.) Prove that the dimension of the vector space
∧k

V is

[
n
k

]
. For a k-form in n dimensions, there are

n!
(n−k)! choices of orders of basis vectors but due to anti-symmetry, there are k! rearrangements of any k-form

up to some negative phase and n!
(n−k)!k! = nCk. As such, the dimension of

∧n
V = 1.

(iii.) 3-forms in the space of R3 take the form:

f(x, y, z)dx ∧ dy ∧ dz

This manifold should be orientable? Jacobian always positive/unital?

3. (i.) on arch

(ii.) 1-forms on R will have the form ω = f(x)dx which is clearly closed and exact as some function can be
defined dg

dx = f, g =
∫
f(x)dx.

(iii.) Given the following form in R
2,

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

calculate dω.

dω =

(
d

dy

y

x2 + y2
+

d

dx

x

x2 + y2

)
dx∧dy =

(
1

x2 + y2
+

−y
(x2 + y2)2

(2y) +
1

x2 + y2
+

−x
(x2 + y2)2

(2x)

)
dx∧dy

= 0

We know ω 6= df for any function f(x, y) and thus is not exact as this would entail

∂f

∂x
=

−y
x2 + y2

,
∂f

∂y
=

x

x2 + y2

but for a function we should have ∂
∂y

∂f
∂x = ∂

∂x
∂f
∂y , which is clearly not satisfied here as
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∂

∂y

∂f

∂x
=

∂

∂y

−y
x2 + y2

=
1

x2 + y2
+

−y
(x2 + y2)2

(2y)

∂

∂x

∂f

∂y
=

∂

∂x

x

x2 + y2
=

1

x2 + y2
+

x

(x2 + y2)2
(2x)

??

??

0.3 Problem Set 3

1. (i) show that this atlas for the Mobius strip is not orientable: charts (x1, x2) and (y1, y2) that overlap in
regions A1 of chart x and A2 of chart y with transition map x1 = y1 + 7, x2 = y2 and overlap in regions B1

of chart x and B2 of chart y with transition map x1 = y1 − 7, x2 = −y2.

(ii) Explain why all one-dimensional manifolds are orientable: A one dimensional manifold will always have

charts of the form xi where there is only one parameter x for every chart i. Thus J = ∂xi

∂xj

lecture 4 1:05:00 for ex statement

lecture 5 1:09:00

lecure 5 1:23:00
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