Matsubara Summations \& An Effective Electron-Phonon Action

Alexander Heilman

April 5, 2023

1 Matsubara Sums

Summations over Matsubara frequencies are often more easily evaluated as contour integrals in the complex domain.

This is done by introducing an auxiliary function, here denoted $g(z)$, that has simple poles at each Matsubara frequency ω_{n}; such that integration over a suitable contour returns the sum of interest as a sum of residues, as below.

$$
\begin{aligned}
\sum_{n} h\left(\omega_{n}\right) & =\frac{\xi}{2 \pi i} \oint d z g(z) h(-i z) \\
& =\left.\xi \sum_{n} \operatorname{Res}[g(z) h(-i z)]\right|_{z=i \omega_{n}}
\end{aligned}
$$

Typical choices for $g(z)$ thus include the following (where the choice depends on whether the frequencies correspond to Fermions or Bosons):

$$
g(z)= \begin{cases}\frac{\beta}{e^{\beta z}-1} & \text { (boson) } \\ \frac{\beta}{e^{\beta z}+1} & \text { (fermion) }\end{cases}
$$

1.1 Evaluation of Pair Correlation Function

We now apply this formalism to the specific example of the pair correlation function $\chi_{n, \mathbf{q}}^{c}$, defined below.
$\chi_{n, \mathbf{q}}^{c}=-\frac{k_{B} T}{V} \sum_{m, \mathbf{p}} G_{0}\left(\mathbf{p}, i \omega_{m}\right) G_{0}\left(-\mathbf{p}+\mathbf{q},-i \omega_{m}+i \omega_{n}\right)$
where

$$
G_{0}\left(\mathbf{p}, i \omega_{n}\right)=\frac{1}{i \omega_{m}-\xi_{\mathbf{p}}}
$$

is the relevant Green's function; and the convention here is that $i \omega_{m}=(2 m+1) \pi / \beta$ are Fermionic Matsubara frequencies and $i \omega_{n}=2 n \pi / \beta$ are Bosonic Matsubara frequencies.

To garner a simpler form of the pair correlation function, we wish evaluate the sum over the Fermionic Matsubara frequencies. The means to evaluate this sum is made explicit by identifying $h(z)$, discussed in the previous section, to be $G_{0}(\mathbf{p}, z) G_{0}\left(-\mathbf{p}+\mathbf{q},-z+i \omega_{n}\right)$ in this case. Expanding the Green's functions, it's then clear that $h(z)$ has (simple) poles for arguments $z=\xi_{\mathbf{p}}$ and $z=i \omega_{n}-\xi_{-\mathbf{p}+\mathbf{q}}$.

Then, choosing $g(z)=\beta /\left(e^{\beta z}+1\right)$, we may simply sum over all the residues of the product
$g(z) h(-i z)$, as specified in the introduction. This yields the following equality:

$$
\chi_{n, \mathbf{q}}^{c}=-\frac{1}{V} \sum_{\mathbf{p}} \frac{-n\left(\xi_{p}\right)+n\left(-\xi_{p-q}+i \omega_{n}\right)}{i \omega_{n}-\xi_{p}-\xi_{-p+q}}
$$

where $n(x)$ is the Fermi-Dirac distribution function, defined as below.

$$
n(x)=\frac{1}{e^{\beta x}+1}
$$

With the expression of $n(x)$ in sight, it's easy to verify then that $n(x+2 \pi i n)=n(x)$ and $n(-x)=$ $1-n(x)$, allowing us to simplify further, so that we have the final expression for the pair correlation function given below.

$$
\chi_{n, \mathbf{q}}^{c}=-\frac{1}{V} \sum_{\mathbf{p}} \frac{1-n\left(\xi_{p}\right)-n\left(\xi_{-p+q}\right)}{i \omega_{n}-\xi_{p}-\xi_{-p+q}}
$$

1.2 Evaluation of Density Correlation Function

Now we apply this formalism to the density correlation function $\chi_{n, \mathbf{q}}^{d}$, defined below.

$$
\chi_{n, \mathbf{q}}^{d}=-\frac{k_{B} T}{V} \sum_{m, \mathbf{p}} G_{0}\left(\mathbf{p}, i \omega_{m}\right) G_{0}\left(\mathbf{p}+\mathbf{q}, i \omega_{m}+i \omega_{n}\right)
$$

Similar to the previous case of the pair correlation function, we now identify $h(z)=G_{0}(\mathbf{p}, z) G_{0}(\mathbf{p}+$ $\mathbf{q}, z+i \omega_{n}$) which has (simple) poles at $z=\xi_{\mathbf{p}}$ and $z=-i \omega_{n}+\xi_{\mathbf{p}+\mathbf{q}}$. Again summing over the residues of these poles, we arrive at a form for our considered correlation function:

$$
\begin{aligned}
\chi_{n, \mathbf{q}}^{d} & =\frac{1}{V} \sum_{\mathbf{p}} \frac{-n\left(\xi_{p}\right)+n\left(\xi_{-p-q}-i \omega_{n}\right)}{i \omega_{n}-\xi_{p}+\xi_{p+q}} \\
& =\frac{1}{V} \sum_{\mathbf{p}} \frac{-n\left(\xi_{p}\right)+n\left(\xi_{-p-q}\right)}{i \omega_{n}-\xi_{p}+\xi_{p+q}}
\end{aligned}
$$

where we've again used $n(x+2 \pi i n)=n(x)$.

2 Electron-Phonon Coupling

The total action of a material in which electrons and phonons exist and interact can be decomposed into a sum of three terms, corresponding to the electron free field, phonon free field, and interaction term between the two; as below:
$S[\bar{\phi}, \phi, \bar{\psi}, \psi]=S_{e l}[\bar{\psi}, \psi]+S_{p h}[\bar{\phi}, \phi]+S_{e l-p h}[\bar{\phi}, \phi, \bar{\psi}, \psi]$
where $\bar{\psi}, \psi$ are (independent) Grassman fields corresponding to the electrons and $\bar{\phi}, \phi$ are complex fields corresponding to the phonons. The phonon and interaction terms then have the following forms:

$$
\begin{aligned}
S_{p h}[\bar{\phi}, \phi] & =\sum_{q, j} \bar{\phi}_{q j}\left(-i \omega_{n}+\omega_{q}\right) \phi_{q j} \\
S_{e l-p h}[\bar{\psi}, \psi, \bar{\phi}, \phi] & =\gamma \sum_{q, j} \frac{i q_{j}}{\sqrt{2 m \omega_{q}}}\left(\bar{\phi}_{-q j}+\phi_{q j}\right) \rho_{q}
\end{aligned}
$$

gral, as below:

$$
\begin{aligned}
& \sum_{q, j}\left(\bar{\phi}_{q j}\left(-i \omega_{n}+\omega_{q}\right) \phi_{q j}+\gamma \frac{i q_{j}}{\sqrt{2 m \omega_{q}}}\left(\bar{\phi}_{-q j}+\phi_{q j}\right) \rho_{q}\right) \\
& =\frac{1}{2} \sum_{q, j}\left(\begin{array}{ll}
{\left[\bar{\phi}_{q j}\right.} & \phi_{q j}
\end{array}\right]\left[\begin{array}{cc}
-i \omega_{n}+\omega_{q} & 0 \\
0 & -i \omega_{n}+\omega_{q}
\end{array}\right]\left[\begin{array}{l}
\bar{\phi}_{q j} \\
\phi_{q j}
\end{array}\right] \\
& \left.\quad+\gamma \frac{i q_{j}}{\sqrt{2 m \omega_{q}}}\left(\left[\begin{array}{ll}
\bar{\phi}_{-q j} & \phi_{q j}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
\bar{\phi}_{-q j} \\
\phi_{q j}
\end{array}\right]\right) \rho_{q}\right)
\end{aligned}
$$

Now making the identifications below,

$$
\begin{gathered}
A=\left[\begin{array}{cc}
-i \omega_{n}+\omega_{q} & 0 \\
0 & -i \omega_{n}+\omega_{q}
\end{array}\right] \\
b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

we may apply the general Gaussian integral formula:

$$
\begin{aligned}
& \int D(x) \exp \left(-\frac{1}{2} v^{T} A v+b \cdot x\right) \\
& =\sqrt{\frac{(2 \pi)^{2}}{|A|}} \exp \left(\frac{1}{2} b^{T} A^{-1} b\right)
\end{aligned}
$$

After applying the logarithm, we then arrive at the desired form for the effective action of the electrons below.

$$
S_{e f f}[\bar{\psi}, \psi]=S_{e l}[\bar{\psi}, \psi]-\frac{\gamma}{2 m} \sum_{q} \frac{q^{2}}{\omega_{n}^{2}+\omega_{q}^{2}} \rho_{q} \rho_{-q}
$$

