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1 Matsubara Sums

Summations over Matsubara frequencies are often
more easily evaluated as contour integrals in the
complex domain.

This is done by introducing an auxiliary func-
tion, here denoted g(z), that has simple poles at
each Matsubara frequency wy,; such that integration
over a suitable contour returns the sum of interest
as a sum of residues, as below.

Typical choices for g(z) thus include the following
(where the choice depends on whether the frequen-
cies correspond to Fermions or Bosons):

%1
g(z)=1q° 8
efz41
1.1 Evaluation of
Function
We now apply this formalism to the specific exam-

ple of the pair correlation function xj, 4, defined
below.
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where

Go(p, iwy,) = Fra—,
is the relevant Green’s function; and the convention
here is that iw,, = (2m+1)7/8 are Fermionic Mat-
subara frequencies and iw, = 2nw/f are Bosonic
Matsubara frequencies.

To garner a simpler form of the pair correla-
tion function, we wish evaluate the sum over the
Fermionic Matsubara frequencies. The means to
evaluate this sum is made explicit by identify-
ing h(z), discussed in the previous section, to be
Go(p, 2)Go(—p + q, —z + iwy) in this case. Ex-
panding the Green’s functions, it’s then clear that
h(z) has (simple) poles for arguments z = &, and
z =Wy — & ptq-

Then, choosing g(z) = B/(e?* + 1), we may
simply sum over all the residues of the product

g(z)h(—iz), as specified in the introduction. This
yields the following equality:
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where n(z) is the Fermi-Dirac distribution function,
defined as below.
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With the expression of n(x) in sight, it’s easy to
verify then that n(z + 27in) = n(z) and n(—z) =
1 — n(z), allowing us to simplify further, so that
we have the final expression for the pair correlation
function given below.
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1.2 Evaluation of Density Correla-
tion Function

Now we apply this formalism to the density corre-
lation function X;]Lq’ defined below.
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Similar to the previous case of the pair correlation
function, we now identify h(z) = Go(p,2)Go(p +
q, z + iwy,) which has (simple) poles at z = £, and
—iwy, +Ep+q. Again summing over the residues
of these poles, we arrive at a form for our considered
correlation function:
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where we’ve again used n(z + 2win) = n(x).

2 Electron-Phonon Coupling

The total action of a material in which electrons
and phonons exist and interact can be decomposed
into a sum of three terms, corresponding to the
electron free field, phonon free field, and interac-
tion term between the two; as below:
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where 9, 1) are (independent) Grassman fields cor-
responding to the electrons and ¢, ¢ are com-
plex fields corresponding to the phonons. The
phonon and interaction terms then have the fol-
lowing forms:
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where we’ve used the shorthand notation ¢ =
(q,wy) and summation over n is implied.

Now, to obtain an effective action, we can ex-
ponentiate the action, integrate over the fields we’d
like to ignore (here the complex fields ¢, ¢), and
then take the natural logarithm of the result, as
below.

Setliho ] = ~tn ([ DIg. ] e~

[é@mﬁw])

= Sal$, 9] - 1n(/D¢ ¢] ¢~ (Spl$ @1+ Sepld @i, wn)

where the electron term of the action is unaffected
due to it’s independence of ¢, ¢. Let us now con-
sider the integral over the remaining exponential
term:
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The argument of the exponential then may be
rewritten such that it resembles a Gaussian inte-
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gral, as below:
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Now making the identifications below,
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we may apply the general Gaussian integral for-
mula:
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After applying the logarithm, we then arrive at the
desired form for the effective action of the electrons
below.
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